Global space-time models for climate ensembles. (English) Zbl 1454.62436

Summary: Global climate models aim to reproduce physical processes on a global scale and predict quantities such as temperature given some forcing inputs. We consider climate ensembles made of collections of such runs with different initial conditions and forcing scenarios. The purpose of this work is to show how the simulated temperatures in the ensemble can be reproduced (emulated) with a global space/time statistical model that addresses the issue of capturing nonstationarities in latitude more effectively than current alternatives in the literature. The model we propose leads to a computationally efficient estimation procedure and, by exploiting the gridded geometry of the data, we can fit massive data sets with millions of simulated data within a few hours. Given a training set of runs, the model efficiently emulates temperature for very different scenarios and therefore is an appealing tool for impact assessment.


62P12 Applications of statistics to environmental and related topics
62M30 Inference from spatial processes
86A10 Meteorology and atmospheric physics
86A32 Geostatistics


Full Text: DOI arXiv Euclid


[1] Banerjee, S., Gelfand, A. E., Finley, A. O. and Sang, H. (2008). Gaussian predictive process models for large spatial data sets. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 825-848. · Zbl 1533.62065 · doi:10.1111/j.1467-9868.2008.00663.x
[2] Berrocal, V. J., Craigmile, P. F. and Guttorp, P. (2012). Regional climate model assessment using statistical upscaling and downscaling techniques. Environmetrics 23 482-492. · doi:10.1002/env.2145
[3] Castruccio, S. and Stein, M. L. (2013). Supplement to “Global space-time models for climate ensembles.” . · Zbl 1454.62436
[4] Castruccio, S., McInerney, D. J., Stein, M. L., Liu, F., Jacob, R. L. and Moyer, E. J. (2013). Statistical emulation of climate model projections based on precomputed GCM runs. Unpublished manuscript.
[5] Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton, J. A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., Kiehl, J. T., Large, W. G., McKenna, D. S., Santer, B. D. and Smith, R. D. (2006). The community climate system model: CCSM3. J. Climate 19 2122-2143.
[6] Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for very large spatial data sets. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 209-226. · Zbl 05563351 · doi:10.1111/j.1467-9868.2007.00633.x
[7] Davis, P. J. (1979). Circulant Matrices . Wiley, New York. · Zbl 0418.15017
[8] Gneiting, T. (2013). Strictly and non-strictly positive definite functions on spheres. Bernoulli 19 1327-1349. · Zbl 1283.62200 · doi:10.3150/12-BEJSP06
[9] Greasby, T. A. and Sain, S. R. (2011). Multivariate spatial analysis of climate change projections. J. Agric. Biol. Environ. Stat. 16 571-585. · Zbl 1306.62281 · doi:10.1007/s13253-011-0072-8
[10] Jones, R. H. (1963). Stochastic processes on a sphere. Ann. Math. Statist. 34 213-218. · Zbl 0202.46702 · doi:10.1214/aoms/1177704257
[11] Jun, M. (2011). Non-stationary cross-covariance models for multivariate processes on a globe. Scand. J. Stat. 38 726-747. · Zbl 1246.91113 · doi:10.1111/j.1467-9469.2011.00751.x
[12] Jun, M., Knutti, R. and Nychka, D. W. (2008). Spatial analysis to quantify numerical model bias and dependence: How many climate models are there? J. Amer. Statist. Assoc. 103 934-947. · Zbl 1205.62191 · doi:10.1198/016214507000001265
[13] Jun, M. and Stein, M. L. (2007). An approach to producing space-time covariance functions on spheres. Technometrics 49 468-479. · doi:10.1198/004017007000000155
[14] Jun, M. and Stein, M. L. (2008). Nonstationary covariance models for global data. Ann. Appl. Stat. 2 1271-1289. · Zbl 1168.62381 · doi:10.1214/08-AOAS183
[15] Lindgren, F., Rue, H. and Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 73 423-498. · Zbl 1274.62360 · doi:10.1111/j.1467-9868.2011.00777.x
[16] Mannshardt-Shamseldin, E. C., Smith, R. L., Sain, S. R., Mearns, L. O. and Cooley, D. (2010). Downscaling extremes: A comparison of extreme value distributions in point-source and gridded precipitation data. Ann. Appl. Stat. 4 484-502. · Zbl 1189.62181 · doi:10.1214/09-AOAS287
[17] Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J. and Zhao, Z. C. (2007). Global climate projections. In Climate Change 2007: The Physical Sciences Basis. Contribution of Working Group I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change (S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller, eds.). Cambridge Univ. Press, Cambridge.
[18] Sain, S. R., Furrer, R. and Cressie, N. (2011). A spatial analysis of multivariate output from regional climate models. Ann. Appl. Stat. 5 150-175. · Zbl 1220.62152 · doi:10.1214/10-AOAS369
[19] Sain, S. R., Nychka, D. and Mearns, L. (2011). Functional ANOVA and regional climate experiments: A statistical analysis of dynamic downscaling. Environmetrics 22 700-711. · doi:10.1002/env.1068
[20] Stein, M. L. (2005). Statistical methods for regular monitoring data. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 667-687. · Zbl 1101.62115 · doi:10.1111/j.1467-9868.2005.00520.x
[21] Stein, M. L. (2007). Spatial variation of total column ozone on a global scale. Ann. Appl. Stat. 1 191-210. · Zbl 1129.62115 · doi:10.1214/07-AOAS106
[22] Stein, M. L. (2008). A modeling approach for large spatial datasets. J. Korean Statist. Soc. 37 3-10. · Zbl 1196.62123 · doi:10.1016/j.jkss.2007.09.001
[23] Taylor, K. E., Stouffer, R. J. and Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc. 93 485-498.
[24] Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J. and Rose, S. K. (2011). The representative concentration pathways: An overview. Clim. Chang. 109 5-31.
[25] Yeager, S. G., Shields, C. A., Large, W. G. and Hack, J. J. (2006). The low-resolution CCSM3. J. Climate 19 2545-2566.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.