Pure powers in recurrence sequences and some related diophantine equations. (English) Zbl 0624.10009

Authors’ summary: “We prove that there are only finitely many terms of a nondegenerate linear recurrence sequence which are q-th powers of an integer subject to certain simple conditions on the roots of the associated characteristic polynomial of the recurrence sequence. Further we show by similar arguments that the diophantine equation \(ax^{2t}+bx^ ty+cy^ 2+dx^ t+ey+f=0\) has only finitely many solutions in integers x,y, and t subject to the appropriate restrictions, and we also treat some related simultaneous diophantine equations.”
Reviewer: P.Kiss


11B37 Recurrences
11D04 Linear Diophantine equations
11D41 Higher degree equations; Fermat’s equation
Full Text: DOI


[1] Baker, A., Bounds for the solutions of the hyperelliptic equation, (Proc. Cambridge Philos. Soc., 65 (1969)), 439-444 · Zbl 0174.33803
[2] Baker, A., A sharpening of the bounds for linear forms in logarithms II, Acta Arith., 24, 33-36 (1973) · Zbl 0261.10025
[3] Baker, A., (Transcendental Number Theory (1975), Cambridge Univ. Press: Cambridge Univ. Press Cambridge) · Zbl 0297.10013
[4] Brindza, B., On \(S\)-integral solutions of the equation \(y^m = f(x)\), Acta Math. Hungar., 44, 133-139 (1984) · Zbl 0552.10009
[6] Lang, S., (Fundamentals of Diophantine Geometry (1983), Springer-Verlag: Springer-Verlag New York) · Zbl 0528.14013
[7] Lewis, D. J., Diophantine equations: \(p\)-adic methods, (Leveque, W. J., Studies in Number Theory 6 (1969), M.A.A., Prentice-Hall: M.A.A., Prentice-Hall Englewood Cliffs) · Zbl 0218.10035
[8] Mahler, K., Eine arithmetische Eigenschaft der Taylor-Koeffizienten rationaler Funktionen, (Proc. Akad. Wetensch. Amsterdam, 38 (1935)), 50-60 · JFM 61.0176.02
[9] Mordell, L. J., (Diophantine Equations (1969), Academic Press: Academic Press New York/London) · Zbl 0188.34503
[10] Nemes, I.; Pethö, A., Polynomial values in linear recurrences, Publ. Math., 31, 229-233 (1984) · Zbl 0557.10010
[12] Pethö, A., Perfect powers in second order linear recurrences, J. Number Theory, 15, 5-13 (1982) · Zbl 0488.10009
[13] Van der Poorten, A. J., (Baker, A.; Masser, D. W., Linear forms in logarithms in the \(p\)-adic case in Transcendence theory: Advances and applications (1977), Academic Press: Academic Press New York/London) · Zbl 0367.10034
[14] Schmidt, W. M., Diophantine approximation, (Lecture Notes in Mathematics, Vol. 785 (1980), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0529.10032
[15] Shorey, T. N.; Stewart, C. L., On the Diophantine equation \(ax^{2t} + bx^ty + cy^2 = d\) and pure powers in recurrence sequences, Math. Scand., 52, 24-36 (1983) · Zbl 0491.10016
[16] Stewart, C. L., On Some Diophantine Equations and Related Linear Recurrence Sequences, (Sém. de Théorie des Nombres. Sém. de Théorie des Nombres, Paris, 1980-1981 (1982), Birkhauser: Birkhauser Boston) · Zbl 0491.10015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.