# zbMATH — the first resource for mathematics

On a property of elliptic Dedekind sums. (English) Zbl 0624.10018
Let L be a lattice in $${\mathbb{C}}$$ with multiplier ring $${\mathcal O}=\{m\in {\mathbb{C}}|$$ mL$$\subset L\}$$. Let $$E_ k(x)$$ be the value of the continuation of $$\sum_{w\in L}(w+x)^{-k} | w+x|^{-s}$$ at $$s=0$$. R. Sczech [Invent. Math. 76, 523-551 (1984; Zbl 0521.10021)] introduced the sums $D(a,c)=(1/c)\sum_{k\in L/cL}E_ 1(ak/c)E_ 1(k/c)$ for a, c in $${\mathcal O}$$ with $$c\neq 0$$, an analog of the classical Dedekind sums, and conjectured that $$D(a,c)=-D(\bar a,\bar c).$$ This formula can be derived from previous work of the author [J. Reine Angew. Math. 373, 148-165 (1987; Zbl 0601.10021)]. Now the author gives a short proof of this formula which rests upon a well-known functional equation of an Eisenstein series. He also discusses some consequences.
Reviewer: G.Köhler

##### MSC:
 11F11 Holomorphic modular forms of integral weight 11F67 Special values of automorphic $$L$$-series, periods of automorphic forms, cohomology, modular symbols
Full Text:
##### References:
 [1] Ito, H., A function on the upper half space which is analogous to the imaginary part of log ν(z), J. reine angew. math., 373, 148-165, (1987) · Zbl 0601.10021 [2] Rademacher, H.; Grosswald, E., (), Carus Mathematical Monographs, No. 16 · JFM 49.0022.03 [3] Sczech, R., Dedekindsummen mit elliptischen funktionen, Invent. math., 76, 523-551, (1984) · Zbl 0521.10021 [4] Weil, A., () [5] Weselmann, U., Eisenstein-kohomologie und dedekindsummen für GL2über imaginarquadratischen zahlkörpern, Diplomarbeit, (1985), Bonn
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.