A local version of the two-circles theorem. (English) Zbl 0624.31002

In [L. Zalcman, Arch. Ration. Mech. Anal. 47, 237-254 (1972; Zbl 0251.30047) and L. Brown, B. M. Schreiber and B. A. Taylor, Ann. Inst. Fourier 23, No. 3, 125-154 (1973; Zbl 0265.46044)] it is proven that if \(r_ 1,r_ 2>0\), \(r_ 1/r_ 2\not\in E_ n\), \(E_ n=\) set of quotients of positive zeros of the Bessel function \(J_{n/2}\), then the only function \(f\in C({\mathbb{R}}^ n)\) satisfying \(A_ j(x)=\int_{| y| >r_ j} f(x+y) dy=0\) for all \(x\in {\mathbb{R}}^ n\), \(j=1,2\), is the function \(f\equiv 0\). It turns out that this result can be obtained from the work of F. John on the Euler-Darboux equation [Math. Ann. 111, 541-559 (1935; Zbl 0012.25402)], in fact, J. D. Smith [Math. Proc. Camb. Philos. Soc. 72, 403-416 (1972; Zbl 0247.42021)] did obtain this way that if \(f\in C(| x| <R)\), \(r_ 1+2r_ 2<R\) and \(A_ j(x)=0\) for \(| x| <R-r_ j\) \((j=1,2)\) (i.e., as long as the ball \(\{| x-y| <r_ j\}\leq \{| y| <R\})\), then \(f\equiv 0\). By a different method we obtain the sharp form of this ‘local-two-circle’ theorem, namely one only needs \(r_ 1+r_ 2<R\), furthermore, this condition is necessary.
Our method does extend to other Pompeiu type problems. For instance, in this paper we obtain local versions of the work of Delsarte-Lions on harmonic functions. Let \(H_ n\) be the set of positive numbers that are quotients of complex zeros of the function \(2^{n/2-1}(\Gamma (n/2)J_{n/2-1}(z)/z^{n/2-1}.\) It is known that #H\({}_ n<\infty\) and \(1\in H_ n\). Let \(r_ 1,r_ 2>0\) be such that \(r_ 1/r_ 2\not\in H_ n\) and \(r_ 1+r_ 2<R\). A function \(f\in C(| x| <R)\) is harmonic if and only if for \(j=1,2\) \[ \int_{| y| =1} f(x+r_ jy) d\sigma (y)=f(x)\quad whenever\quad | x| +r_ j<R \] (d\(\sigma\) \(=\) normalized measure in the unit sphere of \({\mathbb{R}}^ n).\)
In a forthcoming paper we extend this type of theorems to the case where the balls of radius \(r_ 1\), \(r_ 2\) are replaced by sets congruent to a fixed set \(\Omega\). For instance, we can prove the following version of Morera’s theorem: Let \(T_ 0\) be a fixed triangle \(\subseteq\{\) \(z\in {\mathbb{C}}:| z| <1/2\}\). A function \(f\in C(| z| <1)\) is holomorphic if and only if \(\int_{\partial T} f(z)dz=0\) for every triangle \(T\subseteq \{| z| <1\}\), congruent to \(T_ 0\).


31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
31B20 Boundary value and inverse problems for harmonic functions in higher dimensions
53C65 Integral geometry
45F05 Systems of nonsingular linear integral equations
42A75 Classical almost periodic functions, mean periodic functions
Full Text: DOI


[1] Berenstein, C. A., An inverse spectral theorem and its relation to the Pompeiu problem, J. Analyse. Math., 37, 128-144 (1980) · Zbl 0449.35024
[2] C. A. Berenstein,Spectral synthesis on symmetric spaces, Contemp. Math., to appear. · Zbl 0613.53030
[3] Berenstein, C. A.; Dostal, M. A., On convolution equations I, inL’anal. harm. dans le domaine complexe, Springer Lecture Notes in Math., 336, 79-94 (1973) · Zbl 0259.46040
[4] C. A. Berenstein and D. C. Struppa,Solutions of convolution equations in convex sets, Am. J. Math., to appear. · Zbl 0628.46036
[5] Berenstein, C. A.; Taylor, B. A., A new look at interpolation theory for entire functions of one variable, Adv. in Math., 33, 109-143 (1979) · Zbl 0432.30028 · doi:10.1016/S0001-8708(79)80002-X
[6] Berenstein, C. A.; Taylor, B. A., Interpolation problems in C^n with applications to harmonic analysis, J. Analyse Math., 38, 188-254 (1980) · Zbl 0464.42003
[7] C. A. Berenstein and P. C. Yang,An inverse Neumann problem, to appear. · Zbl 0623.35078
[8] Berenstein, C. A.; Yger, A., Le problème de la deconvolution, J. Func. Anal., 54, 113-160 (1983) · Zbl 0526.46042 · doi:10.1016/0022-1236(83)90051-4
[9] Berenstein, C. A.; Zalcman, L., Pompeiu’s problem on symmetric spaces, Comment. Math. Helv., 55, 593-621 (1980) · Zbl 0452.43012 · doi:10.1007/BF02566709
[10] Brown, L.; Schreiber, B. M.; Taylor, B. A., Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier, 23, 125-154 (1973) · Zbl 0265.46044
[11] Chou, C.-C., La transformation de Fourier complexe et l’equation de convolution (1973), Berlin: Springer-Verlag, Berlin · Zbl 0257.46037
[12] Cormack, A. M.; Quinto, E. T., A Radon transform on spheres through the origin inR^nand applications to the classical Darboux equation, Trans. Am. Math. Soc., 260, 575-581 (1980) · Zbl 0444.44003 · doi:10.2307/1998023
[13] Ehrenpreis, L., Solution of some problems of division, part IV, Am. J. Math., 82, 522-588 (1960) · Zbl 0098.08401 · doi:10.2307/2372971
[14] Hörmander, L., The Analysis of Linear Partial Differential Operators (1983), Berlin: Springer-Verlag, Berlin · Zbl 0521.35001
[15] Kahane, J. P., Sur quelques problèmes d’unicité et de prolongement, Ann. Inst. Fourier, 5, 39-130 (1953) · Zbl 0064.35903
[16] B. M. Levitan and I. S. Sargsjan,Introduction to spectral theory, Transl. Math. Monog. AMS39 (1975). · Zbl 0302.47036
[17] Schwartz, L., Théorie générale des fonctions moyenne-périodiques, Ann. of Math., 48, 857-929 (1947) · Zbl 0030.15004 · doi:10.2307/1969386
[18] Smith, J. D., Harmonic analysis of scalar and vector fields inR^n, Proc. Camb. Phil. Soc., 72, 403-416 (1973) · Zbl 0247.42021 · doi:10.1017/S0305004100047241
[19] Watson, G., Theory of Bessel Functions (1966), London/New York: Cambridge University Press, London/New York · Zbl 0174.36202
[20] Zalcman, L., Analyticity and the Pompeiu Problem, Arch. Rat. Mech. Anal., 47, 237-254 (1972) · Zbl 0251.30047 · doi:10.1007/BF00250628
[21] Zalcman, L., Offbeat integral geometry, Am. Math. Monthly, 87, 161-175 (1980) · Zbl 0433.53048 · doi:10.2307/2321600
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.