×

zbMATH — the first resource for mathematics

Rigidity and the lower bound theorem. I. (English) Zbl 0624.52004
Barnette’s lower bound theorem (LBT) says that for every triangulated \((d- 1)\)-manifold with \(n\) vertices the \(f\)-vector satisfies the inequality \(f_ k\geq \phi_ k(n,d)\) where \(\phi_ k(n,d):=\binom{d}{k}n - \binom{d+1}{k+1}k\) for \(1\leq k\leq d-2\) and \(\phi_{d-1}(n,d):=(d-1)n-(d+1)(d-2).\) It has been conjectured that equality \(f_ k=\phi_ k(n,d)\) for some \(k\) implies that the manifold is a sphere combinatorially equivalent to the boundary complex of a stacked \(d\)-polytope. The main result of the present paper is another proof of the LBT and a proof of this conjecture about the case of equality. As expressed by the title the author uses a rigidity result saying that almost all embeddings of the 1-skeleton of such a manifold into \({\mathbb{R}}^ d\) are rigid (this is called “generically \(d\)-rigid”). The author remarks that the basic relation between the LBT and rigidity has been observed independently by M. Gromov.
Among other results the author discusses manifolds with stacked links, one result saying that every \((d-1)\)-manifold (\(d\geq 5)\) which has only stacked vertex links, must belong to the class \({\mathcal H}^ d\) defined by D. Walkup [Acta Math. 125, 75–107 (1970; Zbl 0204.56301)], in particular it cannot be simply connected. Related results about manifolds with boundary, pseudomanifolds and polyhedral manifolds are also included.
At the end various conjectures are given. One of them relates the number \(\gamma (M):=\min \{f_ 1-\phi_ 1(n,d)\}\) with the first Betti number of \(M\), another one concerns a version of the generalized lower bound conjecture (GLBC) involving the h-vector and the Betti numbers. This remarkable paper is announced to continue with parts II and III.
Reviewer: W.Kühnel

MSC:
52Bxx Polytopes and polyhedra
57Q15 Triangulating manifolds
05C99 Graph theory
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Alexandrov, A.D.: Convex polyhedra. Moscow, 1950 (Russian); German transl., Konvexe Polyeder. Berlin: Akademie-Verlag 1958
[2] Altshuler, A.: 3-pseudomanifolds with preassigned links. Trans. Am. Math. Soc.241, 213-237 (1978) · Zbl 0395.57007
[3] Altshuler, A., Perles, M.A.: Quotient polytopes of cyclic polytopes, Part I: Structure and characterization. Isr. J. Math.36, 97-125 (1980) · Zbl 0469.52003
[4] Altshuler, A., Steinberg, L.: Neighborly 4-polytopes with 9 vertices. J. Comb. Theory, Ser. A15, 270-287 (1973) · Zbl 0272.52002
[5] Asimow, L., Roth, B.: The rigidity of graphs I. Trans. Am. Math. Soc.245, 279-289 (1978) · Zbl 0392.05026
[6] Asimow, L., Roth, B.: The rigidity of graphs II. J. Math. Anal. Appl.68, 171-190 (1979) · Zbl 0441.05046
[7] Balinski, M.: On the graph structure of convex polyhedra inn-space. Pac. J. Math.11, 431-434 (1961) · Zbl 0103.39602
[8] Banchoff, T.F.: Tightly embedded 2-dimensional polyhedral manifolds. Am. J. Math.87, 462-472 (1975) · Zbl 0136.21005
[9] Barnette, D.: The minimum number of vertices of a simple polytope. Isr. J. Math.10, 121-125 (1971) · Zbl 0221.52004
[10] Barnette, D.: A proof of the lower bound conjecture for convex polytopes. Pac. J. Math.46, 349-354 (1973) · Zbl 0264.52006
[11] Barnette, D.: Graph theorems for manifolds. Isr. J. Math.16, 62-72 (1973) · Zbl 0273.52004
[12] Barnette, D.: Generalized combinatorial cells and facet splitting. Pac. J. Math.46, 349-354 (1973)
[13] Barnette, D.: Polyhedral maps on 2-manifolds. In: Convexity and related combinatorial geometry. Kay, D.C., Breen, M. (eds.), pp. 7-19. New York: Marcel Dekker Inc. 1982
[14] Barnette, D., Grünbaum, B.: On Steinitz’s theorem concerning convex polytopes and on some properties of planar graphs. The many facets of graph theory. Lecture Notes in Math. vol. 110, pp. 27-40. Berlin-Heidelberg-New York: Springer 1969 · Zbl 0194.25003
[15] Billera, L.J., Lee, C.W.: A proof of the sufficiency of McMullen’s conditions forf-vectors of simplicial polytopes. J. Comb. Theory, Ser. A31, 237-255 (1981) · Zbl 0479.52006
[16] Billera, L.J., Lee, C.W.: The number of faces of polytopes pairs and unbounded polyhedra. Eur. J. Comb.2, 307-322 (1981) · Zbl 0484.52008
[17] Björner, A.: The minimum number of faces of a simple polyhedron. Eur. J. Comb.1, 27-31 (1980) · Zbl 0451.52004
[18] Björner, A., Kalai, G.: An extended Euler-Poincaré formula. (Preprint) · Zbl 0667.52008
[19] Beineke, L.W., Pippert, R.E.: Properties and characterizations ofk-trees. Mathematica18, 141-151 (1971) · Zbl 0221.05057
[20] Bricard, R.: Mémoire sur la théorie de l’octa dre articulé. J. Math. Pures Appl., IX. Ser. 3, 113-138 (1897)
[21] Brönsted, A.: An introduction to convex polytopes. Graduate text in Mathematics, vol. 90. Berlin-Heidelberg-New York: Springer 1983 · Zbl 0509.52001
[22] Cauchy, L.: Sur les polygones et les polyèdres, Second Memoire, I. Ecole Polytechnique9 (1813), 87 (=Oeuvres complètes d’Augustin Cauchy, 2nd sér., Tome 1, 1905, pp. 26-38)
[23] Cooper, D., Thurston, W.P.: Triangulating 3-manifolds using 5 vertex link types. Preprint · Zbl 0656.57004
[24] Connelly, R.: A counterexample to the rigidity conjecture for polyhedra. Publ. Math., Inst. Hautes Étud. Sci.47, 333-338 (1978) · Zbl 0375.53034
[25] Connelly, R.: Conjectures and open problems in rigidity. Proc. International Congress of Math., Helsinki, 1978 · Zbl 0396.51014
[26] Connelly, R.: The rigidity of certain cabled frameworks and the second order rigidity of arbitrarily triangulated convex surfaces. Adv. Math.37, 272-299 (1980) · Zbl 0446.51012
[27] Dirac, G.A.: Homomorphism theorems for graphs. Math. Ann.153, 69-80 (1964) · Zbl 0115.41005
[28] Gluck, H.: Almost all simply connected closed surfaces are rigid. In: Geometric topology. Lecture Notes in Math., vol. 438, pp. 225-239. Berlin-Heidelberg-New York: Springer 1975 · Zbl 0315.50002
[29] Goresky, M., MacPherson, R.: Intersection homology theory. Topology 19, 135-162 (1980) · Zbl 0448.55004
[30] Graver, J.: A combinatorial approach to infinitesimal rigidity. (Preprint)
[31] Grünbaum, B.: Convex polytopes. New York: Wiley Interscience 1967 · Zbl 0163.16603
[32] Grünbaum, B.: Polytopes, graphs and complexes. Bull. Am. Math. Soc.76, 1131-1201 (1970) · Zbl 0211.25001
[33] Grünbaum, B., Shephard, G.C.: Lecture on lost mathematics. Preprint Syracuse University, 1978
[34] Harary, F., Palmer, E.M.: On acyclic simplicial complexes. Mathematika15, 115-122 (1968) · Zbl 0157.54903
[35] Kalai, G.: Combinatorial problems in convexity and the combinatorics of simplicial complexes. Ph.D. Thesis, Jerusalem, 1983 · Zbl 0535.57011
[36] Kalai, G.: Weakly saturated graphs are rigid. Ann. Discrete Math.20, 189-190 (1984) · Zbl 0576.05018
[37] Kalai, G.: Heperconnectivity of graphs. Graphs Comb.1, 65-80 (1985) · Zbl 0609.05051
[38] Kalai, G.: Rigidity and the lower bound theorem II: Elementary polytopes. (Preprint)
[39] Kalai, G.: Rigidity and the lower bound theorem III: Triangulated manifolds with ?few edges?. (Preprint)
[40] Klee, V.: A comparison of primal and dual method of linear programming Num. Math.9, 227-235 (1966) · Zbl 0149.16601
[41] Klee, V.: Polytope pairs and their relations to linear programming. Acta Math.113, 1-25 (1974) · Zbl 0307.90042
[42] Klee, V.: Ad-pseudomanifold withf 0 vertices has at least df 0-(d-1)(d+2)d-simplices. Houston J. Math.1, 81-86 (1975) · Zbl 0316.52004
[43] Kühnel, W., Banchoff, T.F.: The 9 vertex complex projective plane. The Math. Intell.5, issue 3, 11-22 (1983) · Zbl 0534.51009
[44] Kühnel, W., Lassmann, G.: The unique 3-neighborly 4-manifold with few vertices. J. Comb. Theory, Ser. A35, 173-184 (1983) · Zbl 0526.52008
[45] Kuiper, N.H.: Tight embeddings and maps. Submanifolds of geometric type tree inE N , The Chern Symposium. Singer, I.M. (ed.), pp. 97-145, Berlin Heidelberg New York: Springer 1980
[46] MacPherson, R.: Intersection homology. Herman Weyl lectures. (in press) (1987)
[47] McMullen, P.: The numbers of faces of simplicial polytopes. Isr. J. Math.9, 559-570 (1971) · Zbl 0209.53701
[48] McMullen, P., Shephard, G.C.: Convex polytopes and the upper bound conjecture. London Math. Soc. Lecture Notes Series, vol. 3. London/New York: Cambridge Univ. Press 1971 · Zbl 0217.46702
[49] McMullen, P., Walkup, D.W.: A generalized lower bound conjecture for simplicial polytopes. Mathematika18, 264-273 (1971) · Zbl 0233.52003
[50] Ringel, G.: Map color theorem. Berlin-Heidelberg-New York: Springer 1974 · Zbl 0287.05102
[51] Roth, B.: Rigid and flexible frameworks. Am. Math. Mon.88, 6-21 (1981) · Zbl 0455.51012
[52] Schenzel, P.: On the number of faces of simplicial complexes and the purity of Frobenius. Math. Z.178, 125-142 (1981) · Zbl 0472.13012
[53] Spanier, E.H.: Algebraic topology. New York: McGraw Hill 1966 · Zbl 0145.43303
[54] Stanley, R.: The upper bound conjecture and Cohen-Macaulay rings. Stud. Appl. Math.54, 135-142 (1975) · Zbl 0308.52009
[55] Stanley, R.: The number of faces of simplicial convex polytopes. Adv. Math.35, 236-238 (1980) · Zbl 0427.52006
[56] Stanley, R.: The number of faces of simplicial polytopes and spheres. Discrete geometry and convexity, Goodman, J.E., Lutwak, E., Malkevitch, J., Pollack, R. (eds.), pp. 212-223. New York: Ann NY Acad Sci 1985
[57] Stanley, R.: Interactions between commutative algebra and combinatorics. Boston: Birkhäuser 1983 · Zbl 0537.13009
[58] Stanley, R.: Enumerative combinatorics. Vol. I, Wadsworth, Monterey, 1986 · Zbl 0608.05001
[59] Stanley, R.: Generalizedh-vectors, intersection cohomology of toric varieties, and related results. Proc. Japan-USA workshop on commutative algebra and combinatorics (to appear)
[60] Stoker, J.J.: Geometric problems concerning polyhedra in the large. Commun. Pure Appl. Math.21, 119-168 (1968) · Zbl 0159.24301
[61] Steinitz, E., Rademacher, H.: Vorlesungen über die Theorie der Polyeder. Berlin-Göttingen: Springer 1934 · JFM 60.0497.01
[62] Tay, T.S., Whiteley, W.: Generating all isostatic frameworks. Struct. Topology11, 21-70 (1985) · Zbl 0574.51025
[63] Walkup, D.: The lower bound conjecture for 3-and 4-manifolds. Acta Math.125, 75-107 (1970) · Zbl 0204.56301
[64] Welsh, D.: Matroid theory. London: Academic Press 1976 · Zbl 0343.05002
[65] Whiteley, W.: Cones, infinity and 1-story buildings. Struct. Topology8, 53-70 (1983) · Zbl 0545.51017
[66] Whiteley, W.: Infinitesimally rigid polyhedra I. Statics of Frameworks. Trans. Am. Math. Soc.285, 431-465 (1984) · Zbl 0518.52010
[67] Gromov, M.: Partial differential relations. Berlin Heidelberg New York: Springer 1986 · Zbl 0651.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.