zbMATH — the first resource for mathematics

Surgery on double knots and symmetries. (English) Zbl 0624.57013
This paper studies symmetries (i.e. homeomorphisms of finite order) of 3- manifolds obtained by Dehn surgeries on a double of a noninvertible knot, and shows that these manifolds admit no nontrivial symmetry except for a finite number of surgeries. Moreover, it determines when these manifolds are 2-fold branched covers of \(S^ 3\); this gives the exact range of validity of the conjecture of Whitten that “no manifold obtained by a nontrivial surgery on a double of a noninvertible knot is a 2-fold branched covering of \(S^ 3\)”.
Reviewer: M.Sakuma

57N10 Topology of general \(3\)-manifolds (MSC2010)
57M25 Knots and links in the \(3\)-sphere (MSC2010)
57M12 Low-dimensional topology of special (e.g., branched) coverings
57R50 Differential topological aspects of diffeomorphisms
Full Text: DOI EuDML
[1] [BiS] Boileau, M., Siebenmann, L.: A planar classification of Pretzel knots and of Montesinos knots. Prepublication Orsay 1981
[2] [BM] Bing, R., Martin, J.: Cubes with knotted holes. Trans. Am. Math. Soc.155, 217-231 (1971) · Zbl 0213.25005
[3] [Boi 1] Bioleau, M.: Inversibilité des noeuds de Montesinos. Thèse de 3ème cycle (1979). Publication d’Orsay 1981
[4] [Boi2] Boileau, M.: Variétés de dimension 3 et symétries des enrelacs. Thèse de doctorat (Université de Genève, 1985)
[5] [Bon] Bonnahon, F.: Involutions et fibrés de Seifert dans les variétés de dimension 3. Thèse de 3ème cycle, Orsay 1979
[6] [BoS1] Bonahon, F., Siebenmann, L.: Algebraic knots. Monograph (to appear)
[7] [BoS2] Bonahon, F., Siebenmann, L.: Seifert 3-orbifolds and their role as natural crystalline parts of arbitrary compact irreducible 3-orbiofolds. Preprint Orsay 1983
[8] [BZ] Boileau, M., Zimmermann, B.: Symmetries of sufficiently complicated Montesinos links. Preprint 1986
[9] [BuZ] Burde, G., Zieschang, H.: Knots. Berlin, New York: de Gruyter 1985
[10] [CF] Cannon, J.W., Feustel, C.D.: Essential embeddings of annuli and Möbius bands in 2-manifolds. Trans. Am. Math. Soc.215, 219-239 (1976) · Zbl 0314.55004
[11] [EL] Edmonds, A.L., Levingston, C.: Group actions on fibred 3-manifolds. Comment. Math. Helv.58, 529-542 (1983) · Zbl 0532.57024
[12] [FHS] Freedman, M., Hass, J., Scott, P.: Least area incompressible surfaces in 3-manifolds. Invent. Math.71, 609-642 (1983) · Zbl 0498.53045
[13] [Fla] Flapan, E.: Necessary and sufficient conditions for certain homology 3-spheres to have smoothZ p-actions. Pac. J. Math.117, 255-265 (1985) · Zbl 0557.57006
[14] [Gi] Giffen, C.: On transformations of the 3-sphere fixing a knot. Bull. Am. Math. Soc.73, 913-914 (1967) · Zbl 0164.54101
[15] [GL] McA. Gordon, C., Litherland, R.: Incompressible surfaces in branched coverings. In: The Smith conjecture, p. 112. Morgan, J., Bass, H. (eds.) London, New York: Academic Press 1984 · Zbl 0599.57006
[16] [Gon] Gonzalez-Acuna, F.: Dehn’s construction on knots. Bol. Soc. Mat. Mex. II. Ser.15, 58-79 (1970)
[17] [Ha] Hartley, R.: Knots with free period. Can. J. Math.,33, 91-102 (1981) · Zbl 0481.57003
[18] [Ho] Hodgson, C.D.: Involutions and isotopies of lens spaces. Thesis, Melbourne 1981
[19] [Jo] Johannson, K.: Homotopy equivalence of 3-manifolds with boundaries. Lecture Notes Math. 761. Berlin, Heidelberrg, New York: Springer 1979 · Zbl 0412.57007
[20] [JS] Jaco, W., Shalen, P.: Seifert fibred spaces in 3-manifolds. Memoirs A.M.S.220 (1979)
[21] [Ka] Kawauchi, A.: The invertibility problem of amphicherial excellent knots. Proc. Jap. Acad.55, 399-402 (1979) · Zbl 0445.57003
[22] [Ki] Kim, P.K.: Involutions on Klein spacesM(p,q). Trans. Am. Math. Soc.268, 377-409 (1981) · Zbl 0525.57007
[23] [Ko] Kojima, S.: Bounding finite group acting on 3-manifolds. Math. Proc. Camb. Phil. Soc.96, 269-284 (1984) · Zbl 0559.57023
[24] [MeS] Meeks, W., Scott, P.: Finite group actions on 3-manifolds. Invent. Math.86, 287-346 (1986) · Zbl 0626.57006
[25] [MeY] Meeks, W., Yau, S.T.: Topology of 3-dimensional manifolds and the embedding problem in minimal surface theory. Ann. Math.112, 481-484 (1980) · Zbl 0458.57007
[26] [Mo1] Montesinos, J.M.: Variedades de seifert que son recubridores ciclicos ramificados de dos hojas. Bol. Soc. Mat. Mex. II. Ser.18, 1-32 (1973)
[27] [Mo2] Montesinos, J.M.: Revêtements doubles ramifiés de noeuds, variétés de Seifert et diagrmamme de Heegaard. Prépublication Orsay 1979
[28] [Mo3] Montesinos, J.M.: Surgery on links and double branched covers ofS 3 in Knots, groups, and manifolds. Ann. Math. Stud.84, 227-259 (1975)
[29] [MW] Montesinos, J.M., Whitten, W.: Constructions of two-fold branched coverings spaces. Preprint 1983
[30] [My] Myers, R.: Homology 3-spheres which admit no P.L. involutions. Pac. J. Math.94, 379-384 (1981) · Zbl 0492.57001
[31] [Oe] Oertel, U.: Closed incompressible surfaces in complements of star links. Pac. J. Math.111, 209-230 (1984) · Zbl 0549.57004
[32] [Sch] Schubert, H.: Knoten und Volringe. Acta Math.90, 132-286 (1953) · Zbl 0051.40403
[33] [Se] Seifert, H.: Topologie dreidimensionaler gefaserter Räume. Acta Math.60, 147-238 (1933) · Zbl 0006.08304
[34] [Si] Siebenmann, L.: On vanishing of the Rohlin invariant and non finitely amphicheiral homology 3-spheres. Proc. of Siegen Conference (1979). Lect. Notes Math.,788. Berlin, Heidelberg New York: Springer 1980
[35] [Smi] Bass, H., Morgan, J. (eds.): The Smith conjecture, 112. London, New York: Academic Press 1984 · Zbl 0599.57001
[36] [Th] Thurston, W.P.: The geometry and topology of 3-manifolds. To be published by Princeton University Press
[37] [To1] Tollefson, J.L.: Involution ofS 1{\(\times\)}S 2 and other 3-manifolds. Trans. Am. Math. Soc.123, 223-234 (1976)
[38] [To2] Tollefson, J.L.: Periodic homeomorphisms of 3-manifolds fibered overS 1. Trans. Am. Math. Soc.123, 223-234 (1976); Erratum, ibid. Tollefson, J.L.: Periodic homeomorphisms of 3-manifolds fibered overS 1. Trans. Am. Math. Soc.,243, 309-310 (1978) · Zbl 0357.55012
[39] [To3] Tollefson, J.L.: Involutions of seifert fiber spaces. Pac. J. Math.74, 519-529 (1978) · Zbl 0395.57022
[40] [Tro] Trotter, H.F.: Non-invertible knots exist. Topology8, 275-280 (1964) · Zbl 0136.21203
[41] [Wa1] Waldhausen, F.: Über Involutionen der 3-Sphäre., Topology8, 81-91 (1969) · Zbl 0185.27603
[42] [Wa2] Waldhausen, F.: Eine Klasse von 3-dimensionalen Mannigfaltigkeiten, I and II. Invent. Math.3, 308-333 (1967);4, 87-117 (1967) · Zbl 0168.44503
[43] [Wa3] Waldhausen, F.: Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten. Topology6, 505-517 (1967) · Zbl 0172.48704
[44] [Wa4] Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Ann. Math.87, 156-88 (1968) · Zbl 0157.30603
[45] [Wh] Whitten, W.: Inverting double knots. Pac. J. Math.97, 209-216 (1981) · Zbl 0503.57002
[46] [Zie] Zieschang, H.: Clasification of Montesinos knots. In: Topology, Proc. Leningrad 1983 (eds. L.D. Fadeev, A.A. Mal’cev) Lecture Notes Math. 1060, pp. 378-389. Berlin, Heidelberg, New York: Springer 1984
[47] [Zim] Zimmermann, B.: Das Nielsensche Realisierungsproblem für hinreichend große 3-Mannigfaltigkeiten. Math. Z.180, 349-359 (1982) · Zbl 0472.57007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.