The cubic-interpolated pseudo particle (CIP) method: Application to nonlinear and multi-dimensional hyperbolic equations. (English) Zbl 0624.65079

A generalization of the CIP method, proposed previously by the authors for solving linear one-dimensional hyperbolic equations, to multi- dimensional and nonlinear problems is developed. The method gives stable and less diffusive results for square wave propagation compared with various schemes.
Reviewer: V.A.Kostova


65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L60 First-order nonlinear hyperbolic equations
Full Text: DOI


[1] Takewaki, H.; Nishiguchi, A.; Yabe, T., J. comput. phys., 61, 261, (1985)
[2] Shouri, M.M., J. comput. phys., 49, 334, (1983)
[3] Knorr, G.; Mond, M., J. comput. phys., 38, 212, (1980)
[4] Boris, J.P.; Book, D.L., J. comput. phys., 11, 38, (1973)
[5] Lax, P.D.; Wendroff, B., Comm. pure appl. math., 13, 217, (1960)
[6] Lax, P.D., Comm. pure appl. math., 11, 175, (1958)
[7] Fromm, J.E., J. comput. phys., 3, 176, (1968)
[8] Hirsh, R.S., J. comput. phys., 19, 90, (1975)
[9] Book, D.L.; Boris, J.P.; Hain, K., J. comput. phys., 18, 248, (1975)
[10] Nishiguchi, A.; Yabe, T., J. comput. phys., 52, 390, (1983)
[11] Evans, M.W.; Harlow, F.H.; Harlow, F.H.; Amsden, A.A., The particle-in-cell method for the calculation of the dynamic of compressive fluids, (), Los alamos scientific laboratory report LA-3466, (1966), Los Alamos, NM
[12] Wilkins, M.L., J. comput. phys., 36, 281, (1980)
[13] Harten, A.; Zwas, G., J. comput. phys., 9, 568, (1972)
[14] McRae, G.J.; Goodin, W.R.; Seinfeld, J.H., J. comput. phys., 45, 1, (1982)
[15] MacCormack, R.W., AIAA paper, 69-354, (1969)
[16] Zalesak, S.T., J. comput. phys., 31, 335, (1979)
[17] Sod, G.A., J. comput. phys., 27, 1, (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.