×

The cubic-interpolated pseudo particle (CIP) method: Application to nonlinear and multi-dimensional hyperbolic equations. (English) Zbl 0624.65079

A generalization of the CIP method, proposed previously by the authors for solving linear one-dimensional hyperbolic equations, to multi- dimensional and nonlinear problems is developed. The method gives stable and less diffusive results for square wave propagation compared with various schemes.
Reviewer: V.A.Kostova

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L60 First-order nonlinear hyperbolic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Takewaki, H.; Nishiguchi, A.; Yabe, T., J. Comput. Phys., 61, 261 (1985) · Zbl 0607.65055
[2] Shouri, M. M., J. Comput. Phys., 49, 334 (1983) · Zbl 0579.65099
[3] Knorr, G.; Mond, M., J. Comput. Phys., 38, 212 (1980) · Zbl 0452.76047
[4] Boris, J. P.; Book, D. L., J. Comput. Phys., 11, 38 (1973) · Zbl 0251.76004
[5] Lax, P. D.; Wendroff, B., Comm. Pure Appl. Math., 13, 217 (1960) · Zbl 0152.44802
[6] Lax, P. D., Comm. Pure Appl. Math., 11, 175 (1958) · Zbl 0086.01603
[7] Fromm, J. E., J. Comput. Phys., 3, 176 (1968) · Zbl 0172.20202
[8] Hirsh, R. S., J. Comput. Phys., 19, 90 (1975) · Zbl 0326.76024
[9] Book, D. L.; Boris, J. P.; Hain, K., J. Comput. Phys., 18, 248 (1975) · Zbl 0306.76004
[10] Nishiguchi, A.; Yabe, T., J. Comput. Phys., 52, 390 (1983) · Zbl 0517.76016
[11] Amsden, A. A., The Particle-in-Cell Method for the Calculation of the Dynamic of Compressive Fluids, Los Alamos Scientific Laboratory Report LA-3466 (1966), Los Alamos, NM
[12] Wilkins, M. L., J. Comput. Phys., 36, 281 (1980) · Zbl 0436.76040
[13] Harten, A.; Zwas, G., J. Comput. Phys., 9, 568 (1972) · Zbl 0244.76033
[14] McRae, G. J.; Goodin, W. R.; Seinfeld, J. H., J. Comput. Phys., 45, 1 (1982) · Zbl 0502.76098
[15] MacCormack, R. W., AIAA Paper, 69-354 (1969)
[16] Zalesak, S. T., J. Comput. Phys., 31, 335 (1979) · Zbl 0416.76002
[17] Sod, G. A., J. Comput. Phys., 27, 1 (1978) · Zbl 0387.76063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.