Kwon, Yonghoon; Milner, Fabio A. Some new \(L^{\infty}\)-error estimates for mixed finite element methods. (English) Zbl 0624.65098 Mat. Apl. Comput. 5, 249-264 (1986). L\({}^{\infty}\)-error estimates of nearly optimal order and regularity are derived through the use of weighted \(L^ 2\)-norms for the solution of linear second order elliptic and parabolic problems using low-indexed mixed finite elements of Raviart-Thomas-Nedelec type. Cited in 1 Document MSC: 65N15 Error bounds for boundary value problems involving PDEs 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 35J25 Boundary value problems for second-order elliptic equations 35K20 Initial-boundary value problems for second-order parabolic equations Keywords:error estimates; mixed finite elements PDF BibTeX XML Cite \textit{Y. Kwon} and \textit{F. A. Milner}, Mat. Apl. Comput. 5, 249--264 (1986; Zbl 0624.65098) OpenURL