Discretisation of abstract linear evolution equations of parabolic type. (English) Zbl 1278.65078

Summary: We investigate the discretisation of the linear parabolic equation \(du/dt = A(t)u + f(t)\) in abstract spaces, making use of both the implicit and the explicit finite-difference schemes. The stability of the explicit scheme is obtained, and the schemes’ rates of convergence are estimated. Additionally, we study the special cases where \(A\) and \(f\) are approximated by integral averages and also by weighted arithmetic averages.


65J10 Numerical solutions to equations with linear operators
39A12 Discrete version of topics in analysis
Full Text: DOI


[1] Lamberton D, Lapeyre B: Introduction to Stochastic Calculus Applied to Finance. Chapman and Hall, UK; 1996. · Zbl 1167.60001
[2] Gonçalves FF, Grossinho MR, Morais E: On the space discretization of PDEs with unbounded coefficients arising in Financial Mathematics - the case of one spatial dimension.C R Acad Bulg Sci 2010,63(1):35-46. · Zbl 1224.65201
[3] Gonçalves FF, Grossinho MR: Space discretization of Cauchy problems for multidimensional PDEs with unbounded coefficients arising in Financial Mathematics.C R Acad Bulg Sci 2009,62(7):791-798. · Zbl 1199.65271
[4] Gonçalves FF: Numerical approximation of partial differential equations arising in financial option pricing. [http://cemapre.iseg.utl.pt/ fernando/fernando_thesis.pdf] PhD thesis, University of Edinburgh, School of Mathematics; 2007.
[5] Brenner Ph, Thomée V: On rational approximations of semigroups.SIAM J Numer Anal 1979, 16:683-694. · Zbl 0413.41011 · doi:10.1137/0716051
[6] Crouzeix M, Larsson S, Piskarevv S, Thomée V: The stability of rational approximations of analytic semigroups.BIT 1993, 33:74-84. · Zbl 0783.65050 · doi:10.1007/BF01990345
[7] Crouzeix M: On multistep approximation of semigroups in Banach spaces.J Comput Appl Math 1987, 20:25-36. · Zbl 0632.65067 · doi:10.1016/0377-0427(87)90123-3
[8] Le Roux M-N: Semidiscretization in time for parabolic problems.Math Comp 1979,33(147):919-931. · Zbl 0417.65049 · doi:10.1090/S0025-5718-1979-0528047-2
[9] Lenferink HWJ, Spijker MN: On the use of stability regions in the numerical analysis of initial value problems.Math Comp 1991, 57:221-237. · Zbl 0727.65072 · doi:10.1090/S0025-5718-1991-1079026-6
[10] Bakaev NYu: On variable stepsize Runge-Kutta approximations of a Cauchy problem for the evolution equation.BIT 1998,38(3):462-485. · Zbl 0912.65047 · doi:10.1007/BF02510254
[11] González C, Palencia C: Stability of Runge-Kutta methods for abstract time-dependent parabolic problems: the Hölder case.Math Comput 1999,68(225):73-89. · Zbl 0909.65030 · doi:10.1090/S0025-5718-99-01018-2
[12] González C, Palencia C: Stability of time-stepping methods for abstract time-dependent parabolic problems.SIAM J Numer Anal 1998,35(3):973-989. · Zbl 0923.65027 · doi:10.1137/S0036142995283412
[13] Palencia C: A stability result for sectorial operators in Banach spaces.SIAM J Numer Anal 1993, 30:1373-1384. · Zbl 0794.65053 · doi:10.1137/0730071
[14] Gianazza U, Savaré G: Abstract evolution equations on variable domains: an approach by minimizing movements.Ann Scuola Norm Sup Pisa Cl Sci (5) 1996,23(1):149-178. · Zbl 0864.35048
[15] Gyöngy I, Millet A: Rate of convergence of space time approximations for stochastic evolution equations.Potential Anal 2009,30(1):29-64. · Zbl 1168.60025 · doi:10.1007/s11118-008-9105-5
[16] Lions JL, Magenes E: Problèmes aux Limites Non Homogènes et Applications, vol. 2 (in French). Dunod, Gauthier-Villars, Paris, France; 1968. · Zbl 0165.10801
[17] Lions JL: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires (in French). Dunod, Gauthier-Villars, Paris, France; 1969. · Zbl 0189.40603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.