Li, Xuefeng; Wang, Zhaolu; Liu, Hongjun Optimizing initial chirp for efficient femtosecond wavelength conversion in silicon waveguide by split-step Fourier method. (English) Zbl 1290.78015 Appl. Math. Comput. 218, No. 24, 11970-11975 (2012). The paper deals with the propagation of waves in a silicon waveguide modeled by the tree-wave coupled system of nonlinear Schrödinger equations. The equations are solved numerically by a split-step Fourier method, in view of studying effective wavelength conversion via degenerate four-wave mixing. The emphasis is made on investigating the impact of an initial chirp on the associated spectra. The conversion bandwidth and the conversion efficiency as a function of the signal wavelength are studied. Reviewer: Dmitry Shepelsky (Kharkov) Cited in 3 Documents MSC: 78A60 Lasers, masers, optical bistability, nonlinear optics 35Q55 NLS equations (nonlinear Schrödinger equations) 78A50 Antennas, waveguides in optics and electromagnetic theory 65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs 65T50 Numerical methods for discrete and fast Fourier transforms Keywords:wavelength conversion; ultrafast laser; nonlinear Schrödinger equation; split-step Fourier method; optimization PDF BibTeX XML Cite \textit{X. Li} et al., Appl. Math. Comput. 218, No. 24, 11970--11975 (2012; Zbl 1290.78015) Full Text: DOI References: [1] Leuthold, J.; Koos, C.; Freude, W., Nonlinear silicon photonics, Nat. Photonics, 4, 535-544 (2010) [2] Rong, H.; Jones, R.; Liu, A.; Cohen, O.; Hak, D.; Fang, A.; Paniccia, M., A continuous-wave Raman silicon laser, Nature, 433, 725-728 (2005) [3] Liu, Y.; Tsang, H., Time dependent density of free carriers generated by two photon absorption in silicon waveguides, Appl. Phys. Lett., 90, 211105-1-211105-3 (2007) [4] Hsieh, I.-W.; Chen, X.; Dadap, J. I.; Panoiu, N. C.; Osgood, R. M., Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides, Opt. Express, 14, 12380-12387 (2006) [5] Yin, L.; Agrawal, G. P., Impact of two-photon absorption on self-phase modulation in silicon waveguides, Opt. Lett., 32, 2031-2033 (2007) [6] Yin, L.; Zhang, J.; Fauchet, P. M.; Agrawal, G. P., Optical switching using nonlinear polarization rotation inside silicon waveguides, Opt. Lett., 34, 476-478 (2009) [7] Espinola, R. L.; Dadap, J. I.; Osgood, R. M.; McNab, S. J.; Vlasov, Y. A., C-band wavelength conversion in silicon photonic wire waveguides, Opt. Express, 13, 4341-4349 (2005) [8] Kuo, Y. -H.; Rong, H.; Sih, V.; Xu, S.; Paniccia, M.; Cohen, O., Demonstration of wavelength conversion at 40Gb/s data rate in silicon waveguides, Opt. Express, 14, 11721-11726 (2006) [9] Foster, M. A.; Turner, A. C.; Sharping, J. E.; Schmidt, B. S.; Lipson, M.; Gaeta, A. L., Broad-band optical parametric gain on a silicon photonic chip, Nature, 441, 960-963 (2006) [10] Liu, X.; Osgood, R. M.; Vlasov, Y. A.; Green, W. M.J., Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides, Nat. Photonics, 4, 557-560 (2010) [11] Mathlouthi, W.; Rong, H.; Paniccia, M., Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides, Opt. Express, 16, 16741-16745 (2008) [12] Lin, Q.; Zhang, J.; Fauchet, P. M.; Agrawal, G. P., Ultrabroadband parametric generation and wavelength conversion in silicon waveguides, Opt. Express, 14, 4786-4799 (2006) [13] Wang, Z.; Liu, H.; Huang, N.; Sun, Q.; Wen, J., Influence of spectral broadening on femtosecond wavelength conversion based on four-wave mixing in silicon waveguides, Appl. Opt., 50, 5430-5436 (2011) [14] Agrawal, G. P., Nonlinear Fiber Optics (2007), Academic Press: Academic Press Maryland Heights [15] Lin, Q.; Painter, Oskar J.; Agrawal, G. P., Nonlinear optical phenomena in silicon waveguides: modeling and applications, Opt. Express, 15, 16604-16644 (2007) [16] Sang, X.; Boyraz, O., Gain and noise characteristics of high-bit-rate silicon parametric amplifiers, Opt. Express, 16, 13122-13132 (2008) [17] Weideman, J. A.C.; Herbst, B. M., Split-step methods for the solution of the nonlinear Schrodinger equation, SIAM J. Numer. Anal., 23, 485-507 (1986) · Zbl 0597.76012 [18] Wang, Hanquan, Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations, Appl. Math. Comput., 170, 17-35 (2005) · Zbl 1082.65570 [19] Xiangming, Xu; Taha, Thiab R., Parallel split-step Fourier methods for nonlinear Schrödinger-type equations, J. Math. Model. Algorithms, 2, 185-201 (2003) · Zbl 1047.65072 [20] Muslu, G. M.; Erbay, H. A., Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation, Math. Comput. Simul., 67, 581-595 (2005) · Zbl 1064.65117 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.