×

Reconstruction for cavities with impedance boundary condition. (English) Zbl 1401.78011

The authors study the inverse scattering problem of recovering the shape of a cavity or the surface impedance from one source and a knowledge of measurements placed on a curve inside the cavity. By using potential operators, the inverse problem is equivalently transformed in a system of nonlinear and ill-posed integral equations which is analysed by using regularized iterations. Numerical experiments are included to verify the effectiveness of the method.

MSC:

78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
45Q05 Inverse problems for integral equations
65R30 Numerical methods for ill-posed problems for integral equations
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] I. Akduman and R. Kress, Direct and inverse scattering problems for inhomogeneous impedance cylinders of arbitrary shape , Radio Sci. 38 (2003), 1055-1064.
[2] T.S. Angell and A. Kirsch, Optimization methods in electromagnetic radiation , Springer Mono. Math., Springer-Verlag, New York, 2004. · Zbl 1037.78001
[3] L.M. Brekhovskikh, Waves in layered media , Appl. Math. Mech. 16 , Academic Press, Inc., New York, 1960. · Zbl 0558.73018
[4] F. Cakoni and D. Colton, Qualitative methods in inverse scattering theory , in Interaction of mechanics and mathematics , Springer-Verlag, Berlin, 2006. · Zbl 1099.78008
[5] F. Cakoni and R. Kress, Integral equations for inverse problems in corrosion detection from partial Cauchy data , Inverse Prob. Imag. 1 (2007), 229-245. · Zbl 1122.35150 · doi:10.3934/ipi.2007.1.229
[6] F. Cakoni, R. Kress and C. Schuft, Integral equations for shape and impedance reconstruction in corrosion detection , Inverse Prob. 26 (2010), 095012, 1-24. · Zbl 1198.35289 · doi:10.1088/0266-5611/26/9/095012
[7] —, Simultaneous reconstruction of shape and impedance in corrosion detection , Methods Appl. Anal. 17 (2010), 357-378. · Zbl 1219.35071 · doi:10.4310/MAA.2010.v17.n4.a3
[8] D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region , Inverse Prob. 12 (1996), 383-393. · Zbl 0859.35133 · doi:10.1088/0266-5611/12/4/003
[9] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory , Appl. Math. Sci. 93 , Springer-Verlag, Berlin, 1998. · Zbl 0760.35053
[10] D. Colton, M. Piana and R. Potthast, A simple method using Morozov’s discrepancy principle for solving inverse scattering problems , Inverse Prob. 13 (1997), 1477-1493. · Zbl 0902.35123 · doi:10.1088/0266-5611/13/6/005
[11] P.C. Hansen, Regularization tools : A Matlab package for analysis and solution of discrete ill-posed problems , Numer. Algor. 6 (1994), 1-35. · Zbl 0789.65029 · doi:10.1007/BF02149761
[12] O. Ivanyshyn and T. Johansson, Nonlinear integral equation methods for the reconstruction of an acoustically sound-soft obstacle , J. Int. Equat. Appl. 19 (2007), 289-308. · Zbl 1135.65392 · doi:10.1216/jiea/1190905488
[13] O. Ivanyshyn and R. Kress, Inverse scattering for planar cracks via nonlinear integral equations , Math. Meth. Appl. Sci. 31 (2008), 1221-1232. · Zbl 1153.65367 · doi:10.1002/mma.970
[14] O. Ivanyshyn, R. Kress and P. Serranho, Huygens’ principle and iterative methods in inverse obstacle scattering , Adv. Comp. Math. 33 (2010), 413-429. · Zbl 1205.65304 · doi:10.1007/s10444-009-9135-6
[15] P. Jakubik and R. Potthast, Testing the integrity of some cavity - The Cauchy problem and the range test , Appl. Numer. Math. 58 (2008), 899-914. · Zbl 1151.78011 · doi:10.1016/j.apnum.2007.04.007
[16] T. Johansson and B.D. Sleeman, Reconstruction of an acoustically sound-soft obstacle from one incident field and the far-field pattern , IMA J. Appl. Math. 72 (2007), 96-112. · Zbl 1121.76059 · doi:10.1093/imamat/hxl026
[17] R. Kress, Linear integral equations , Appl. Math. Sci. 82 , Springer-Verlag, New York, 1999. · Zbl 0671.45001
[18] R. Kress and W. Rundell, Inverse scattering for shape and impedance , Inverse Prob. 17 (2001), 1075-1085. · Zbl 0985.35109 · doi:10.1088/0266-5611/17/4/334
[19] —, Nonlinear integral equations and the iterative solution for an inverse boundary value problem , Inverse Prob. 21 (2005), 1207-1223. · Zbl 1086.35139 · doi:10.1088/0266-5611/21/4/002
[20] C.L. Lawson and R.J. Hanson, Solving least squares problems , SIAM, Philadelphia, 1995. · Zbl 0860.65029
[21] K.-M. Lee, Inverse scattering via nonlinear integral equations for a Neumann crack , Inverse Prob. 22 (2006), 1989-2000. · Zbl 1105.35143 · doi:10.1088/0266-5611/22/6/005
[22] W. Mclean, Strongly elliptic systems and boundary integral equations , Cambridge University Press, Cambridge, 2000. · Zbl 0948.35001
[23] R. Potthast, Fréchet differentiability of boundary integral operators in inverse acoustic scattering , Inverse Prob. 10 (1994), 431-447. · Zbl 0805.35157 · doi:10.1088/0266-5611/10/2/016
[24] H.-H. Qin and F. Cakoni, Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem , Inverse Prob. 27 (2011), 035005, 1-17. · Zbl 1222.65151 · doi:10.1088/0266-5611/27/3/035005
[25] H.-H. Qin and D. Colton, The inverse scattering problem for cavities , Appl. Numer. Math. 62 (2012), 699-708. · Zbl 1241.78027 · doi:10.1016/j.apnum.2010.10.011
[26] —, The inverse scattering problem for cavities with impedance boundary condition , Adv. Comp. Math. 36 (2012), 157-174. · Zbl 1238.35189 · doi:10.1007/s10444-011-9179-2
[27] P. Serranho, A hybrid method for inverse scattering for shape and impedance , Inverse Prob. 22 (2006), 663-680. · Zbl 1094.35145 · doi:10.1088/0266-5611/22/2/017
[28] F. Zeng, F. Cakoni and J. Sun, An inverse electromagnetic scattering problem for a cavity , Inverse Prob. 27 (2011), 125002, 1-17. \noindentstyle · Zbl 1237.78019 · doi:10.1088/0266-5611/27/12/125002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.