×

Positive solutions of a fractional thermostat model. (English) Zbl 1280.35166

Summary: We study the existence of positive solutions of a nonlinear fractional heat equation with nonlocal boundary conditions depending on a positive parameter. Our results extend the second-order thermostat model to the non-integer case. We base our analysis on the known Guo-Krasnosel’skii fixed point theorem on cones.

MSC:

35R11 Fractional partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] doi:10.1016/j.camwa.2009.07.091 · Zbl 1205.34003 · doi:10.1016/j.camwa.2009.07.091
[2] doi:10.1016/j.nonrwa.2011.07.052 · Zbl 1238.34008 · doi:10.1016/j.nonrwa.2011.07.052
[3] doi:10.1016/j.jmaa.2005.02.052 · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[4] doi:10.1016/j.jmaa.2011.11.065 · Zbl 1232.34010 · doi:10.1016/j.jmaa.2011.11.065
[5] doi:10.1007/s00030-005-0039-y · Zbl 1112.34017 · doi:10.1007/s00030-005-0039-y
[6] doi:10.1016/S0022-247X(02)00125-7 · Zbl 1008.45004 · doi:10.1016/S0022-247X(02)00125-7
[7] doi:10.1112/S0024610706023179 · Zbl 1115.34028 · doi:10.1112/S0024610706023179
[8] doi:10.1006/jdeq.1998.3475 · Zbl 0909.34013 · doi:10.1006/jdeq.1998.3475
[9] doi:10.1016/S0022-247X(03)00100-8 · Zbl 1036.34032 · doi:10.1016/S0022-247X(03)00100-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.