zbMATH — the first resource for mathematics

Appendix to Orloff. Critical values of certain tensor product L- functions. (English) Zbl 0625.10022
This paper, as its title implies, is an appendix to the paper reviewed above (Zbl 0625.10021). In it the author explicates the meaning of Deligne’s conjectures about the special values of L-function for r-fold Rankin zeta-functions of cusp forms on \(GL_ 2\). The result of these considerations is given as a conjecture which is much more ‘concrete’ than Deligne’s. In the cases \(r=2\) the validity of this conjecture follows from a theorem of Shimura, and in the case \(r=3\) from the cited work of Orloff.
Reviewer: S.J.Patterson

11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F27 Theta series; Weil representation; theta correspondences
Full Text: DOI EuDML
[1] [B] Blasius, D.: On the critical values of HeckeL-series. Ann. Math.124, 23-64 (1986) · Zbl 0608.10029
[2] [G1] Garrett, P.B.: Decomposition of Eisenstein series: triple productL-functions. Ann. Math. (in press) (1987)
[3] [G2] Garrett, P.B.: Integral representations of certainL-functions attached to one, two, and three modular forms. (Preprint 1987)
[4] [D] Deligne, P.: Valeurs de fonctionsL et Periodes d’integrales. Proc. Symp. Pure Math.33 (vol. 2) 313-342 (1977)
[5] [F] Feit, P.: Poles and residues of Eisenstein Series for symplectic and unitary groups. Mem. Am. Math. Soc.61 (number 346) 1-89 (1986) · Zbl 0591.10017
[6] [K] Kalinin, V.: Eisenstein series on the symplectic group. Math. Sbornik103, 519-549 (1977);145, 631 C (1977)
[7] [L] Langlands, R.P.: On the functional equations satisfied by Eisenstein series. Lect. Notes in Math., vol. 544. Berlin-Heidelberg-New York: 1971 · Zbl 0332.10018
[8] [M] Maass, H.: Siegel’s modular forms and dirichlet series. Lect. Notes in Math., vol. 216. Berlin-Heidelberg-New York: Springer 1971 · Zbl 0224.10028
[9] [Se] Serre, J-P.: Facteurs Locaux des fonctions Zêta des variétés algebriques (Définitions et conjectures). Sem. Delange-Pisot-Poitou, 1969/70, no 19
[10] [Si] Siegel, C.L.: Gesammelte Abhandlungen, I?IV. Berlin-Heidelberg-New York: Springer 1966
[11] [Or] Orloff, T.: The functional equation of Eisenstein series. (Preprint 1986)
[12] [Ps.-R.] Piatetski-Shapiro, I.I., Rallis, S.: Rankin integral representations ofL-functions for classical groups. In: Rankin, R. (ed.), Modular forms. Chichester: Ellis-Horwood 1985
[13] [S1] Shimura, G.: The special values of the zeta functions associated with cusp forms. Commun. Pure Appl. Math.102, 783-804 (1976) · Zbl 0348.10015
[14] [S2] Shimura, G.: Arithmetic of differential operators on symmetric domains. Duke Math. J.48, 813-843 (1981) · Zbl 0487.10021
[15] [S3] Shimura, G.: On Eisenstein series. Duke Math. J.50, 417-476 (1983) · Zbl 0519.10019
[16] [S4] Shimura, G.: Differential operators and the singular values of Eisenstein series. Duke Math. J.51, 261-329 (1984) · Zbl 0546.10025
[17] [S5] Shimura, G.: On some arithmetic properties of modular forms of one and several variables. Ann. Math.102, 491-515 (1975) · Zbl 0327.10028
[18] [S6] Shimura, G.: On the periods of modular forms. Math. Ann.229, 211-221 (1977) · Zbl 0363.10019
[19] [St] Stanley, R.P.: Generating functions. In: Rota, G.-C. (ed.), Studies in combinatorics, Studies in Math.17, Washington, D.C.: The Mathematical Association of America (1978) · Zbl 0422.05003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.