Construction de p-extensions galoisiennes d’un corps de caractéristique différente de p. (Construction of Galois p-extensions of fields with characteristic different from p). (French) Zbl 0625.12011

The following type of embedding problem is explicitly solved: given an extension of fields E/K with Galois group \(G=Gal(E/K)\) an elementary abelian p-group and a group extension \[ 1 \to {\mathbb{F}}_ p \to U \to G \to 1 \tag{*} \] where \({\mathbb{F}}_ p\) denotes a cyclic group of order p, do there exist extensions of fields N/E with Gal(N/E)\(\simeq {\mathbb{F}}_ p\) and Gal(N/K)\(\simeq U\), and, if the answer is affirmative, construct these fields N. It is assumed that the characteristic of K is not p and that K contains a primitive p-th root of unity \(\zeta_ p.\)
General results on embedding problems and on the Brauer group would only give the following information. A certain canonical homomorphism \(\Phi_{E/K}\) from the second cohomology group \(H^ 2(G,{\mathbb{F}}_ p)\) to the p-torsion subgroup of the Brauer group of K, \(Br(K)_ p\), has the property that the embedding problem has solutions iff the class \(\epsilon\) of (*) in \(H^ 2(G, {\mathbb{F}}_ p)\) lies in the kernel of \(\Phi_{E/K}\); moreover it is known that each element in \(Br(K)_ p\) can be written as a sum of elements of type (a,b) with \(a,b\in K^{\times 2}\), where (, ) denotes the usual symbol in \(Br(K)_ p.\)
Now in this paper the author gives the following more precise results: for all \(a,b\in K^{\times}\cap E^{\times p}\) elements \((a)_ E\) and \((a,b)_ E\) in \(H^ 2(G, {\mathbb{F}}_ p)\) are defined, it is verified that \(\Phi_{E/K}((a,b)_ E)=(a,b)\) and \(\Phi_{E/K}((a)_ E)=(a,\zeta_ p)\), and it is shown that and how \(\epsilon\) can be written in a canonical way as a sum of elements \((a,b)_ E\) and \((a)_ E\) (here three cases have to be distinguished and if \(p=2\) the classification of non-degenerate quadratic forms over \({\mathbb{F}}_ 2\) is used).
Furthermore the condition \(\Phi_{E/K}(\epsilon)=0\) is then rewritten in terms of a system of ‘norm equations’ and it is shown how each solution of this system gives a solution N of the embedding problem.
Reviewer: J.Brinkhuis


12F10 Separable extensions, Galois theory
11R32 Galois theory
12G05 Galois cohomology
11R34 Galois cohomology
11E04 Quadratic forms over general fields
Full Text: DOI


[1] Brown, K.S, Cohomology of groups, () · Zbl 0367.18012
[2] Cassels, J; Fröhlich, A, Algebraic number theory, (1967), Academic Press New York · Zbl 0153.07403
[3] Damey, P; Payan, J.-J, Existence et construction des extensions galoisiennes et non-abéliennes de degré 8 d’un corps de caractéristique différente de 2, J. reine angew. math., 244, 37-54, (1970) · Zbl 0206.34401
[4] Damey, P; Martinet, J, Plongement d’une extension quadratique dans une extension quaternionienne, J. reine angew. math., 262/263, 323-338, (1973) · Zbl 0297.12010
[5] Dedekind, R, Konstruktion von quaternionkörpern, (), 376-384
[6] Dieudonné, J, La Géométrie des groupes classiques, (1971), Springer-Verlag Berlin · Zbl 0067.26104
[7] Dye, R.H, On the arf invariant, J. algebra, 53, 36-39, (1978) · Zbl 0393.10019
[8] Fröhlich, A, The rational characterization of certain sets of relatively abelian extensions, Philos. trans. roy. soc. London ser. A, 251, 385-425, (1959) · Zbl 0098.03402
[9] Fröhlich, A, Artin-root numbers and normal integral bases for quaternion fields, Invent. math., 17, 143-166, (1972) · Zbl 0261.12008
[10] Fröhlich, A, Orthogonal representations of Galois groups, stiefel—whitney classes and Hasse-Witt invariants, J. reine angew. math., 360, 84-123, (1985) · Zbl 0556.12005
[11] Fry, M.D, Automorphisms and stem extensions, J. algebra, 88, 134-154, (1984) · Zbl 0555.20021
[12] Huppert, B, Endliche gruppen I, (1967), Springer-Verlag Berlin · Zbl 0217.07201
[13] Johnson, D.L, Presentation of groups, L.M.S. lecture note series, no. 22, (1976), Cambridge · Zbl 0324.20040
[14] Martinet, J, Modules sur l’algébre du groupe quaternionien, Ann. sci. ecole norm. sup. Sér. 4éme, 4, 399-408, (1971) · Zbl 0219.12012
[15] Martinet, J, Lettre à l’auteur, (Février 1984)
[16] Massy, R, Solutions explicites de problémes de plongement, J. number theory, 20, 299-314, (1985) · Zbl 0584.12022
[17] Massy, R, Un critére numérique de résolubilité de problémes de plongement, (), exp. 33 · Zbl 0534.12007
[18] Massy, R; Nguyen-Quang-Do, T, Plongement d’une extension de degré p2 dans une surextension non abélienne de degré p3: étude locale-globale, J. reine angew. math., 291, 149-161, (1977) · Zbl 0346.12005
[19] Riou-Perrin, B, Plongement d’une extension diédrale dans une extension diédrale ou quaternionienne, Publ. math., (1979), Orsay, No. 79-04 · Zbl 0426.12005
[20] Serre, J.-P, Corps locaux, (1980), Hermann Paris
[21] Serre, J.-P, L’invariant De Witt de la forme tr(x^{2}), Comment. math. helv., 59, 651-676, (1984) · Zbl 0565.12014
[22] Soulé, C, K2 et le groupe de Brauer, (), exp. 601
[23] Witt, E, Konstruktion von galoisschen Körpern der charakteristik p zu vorgegebener gruppe der ordnung pf, J. crelle, 174, 237-245, (1936) · JFM 62.0110.02
[24] Wyman, B.F, Wildly ramified gamma extensions, Amer. J. math., 91, 135-152, (1969) · Zbl 0188.11003
[25] Yamazaki, K, On projective representations and ring extensions of finite groups, J. fac. sci. univ. Tokyo sect. IA math., 10, 147-195, (1964) · Zbl 0125.01601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.