Large time behaviour of solutions of the porous media equation with absorption. (English) Zbl 0625.35048

The paper is concerned with the qualitative properties of the solution u of the problem \[ u\in L^{\infty}({\mathbb{R}}^ n\times]0,T[)\quad \forall T>0; \]
\[ \frac{\partial u}{\partial t}=\Delta (u^ m)-u^ p\quad in\quad {\mathbb{R}}^ n\times]0,+\infty [\quad u(x,t)\geq 0\quad in\quad {\mathbb{R}}^ n\times]0,+\infty [;\quad u(x,0)=\phi (x)\quad in\quad {\mathbb{R}}^ n \] where \(m\geq 1\), \(p>1\), \(n\geq 1\), \(\phi \in L^{\infty}({\mathbb{R}}^ n)\) and \(\phi\geq 0\). Under the assumption that \(\lim_{| x| \to \infty} | x|^{\alpha} \phi (x)=A\) in a suitable sense for some \(\alpha\), \(A>0\), the authors describe the asymptotic behaviour of u(x,t) as \(t\to +\infty\) in dependence of the parameters m, p and \(\alpha\).
More precisely, the following cases are treated:
i) \(p>m\), \(0<\alpha <2/(p-m);\)
ii) \(p>m+2/n\), \(m>1\), \(2/(p-m)<\alpha <n;\)
iii) \(p>m+2/n\), \(m>1\), \(\alpha >n.\)
Finally, in the last section the authors show some generalizations to the case in which \(u^ p\) is substituted by a function g(u) with \(g(0)=0\) and \(g(s)>0\) for \(s>0\).
Reviewer: M.Degiovanni


35K55 Nonlinear parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
Full Text: DOI


[1] N. D. Alikakos and R. Rostamian,On the uniformization of the solutions of the porous medium equation in R n , Isr. J. Math.47 (1984), 270–290. · Zbl 0562.35050
[2] G. I. Barenblatt,On some unsteady motions in a liquid or a gas in a porous medium, Prikladnaja Matematika i Mechanika16 (1952), 67–78. · Zbl 0049.41902
[3] Ph. Benilan, M. G. Crandall and M. Pierre,Solutions of the porous medium equation in R N under optimal conditions of initial values, Indiana Univ. Math. J.33 (1984), 51–87. · Zbl 0552.35045
[4] M. Bertsch, R. Kersner and L. A. Peletier,Positivity versus localization in degenerate diffusion equations, Nonlinear Anal. TMA9 (1985), 987–1008. · Zbl 0596.35073
[5] M. Bertsch, T. Nanbu and L. A. Peletier,Decay of solutions of a degenerate nonlinear diffusion equation, Nonlinear Anal.6 (1982), 539–554. · Zbl 0487.35051
[6] H. Brézis, L. A. Peletier and D. Terman,A very singular solution of the heat equation with absorption, Arch. Rat. Mech. Anal., to appear. · Zbl 0627.35046
[7] B. E. Dahlberg and C. E. Kenig,Nonnegative solutions of the porous medium equations, Commun. Partial Differ. Equ.9 (1984), 409–437. · Zbl 0547.35057
[8] E. DiBenedetto,Continuity of weak solutions to a general porous media equation, Indiana Univ. Math. J.32 (1983), 83–118. · Zbl 0526.35042
[9] M. Escobedo and O. Kavian,Asymptotic behaviour of positive solutions of a nonlinear heat equation, to appear. · Zbl 0666.35046
[10] A. Friedman and S. Kamin,The asymptotic behaviour of gas in an n-dimensional porous medium, Trans. Am. Math. Soc.262 (1980), 551–563. · Zbl 0447.76076
[11] V. A. Galaktionov, S. P. Kurdjumov and A. A. Samarskii,On asymptotic ”eigenfunctions” of the Cauchy problem for a nonlinear parabolic equation, Mat. Sb.126 (1985), 435–472 (in Russian).
[12] A. Gmira and L. Veron,Large time behaviour of solutions of a semilinear equation in R n , J. Differ. Equ.53 (1984), 258–276. · Zbl 0529.35041
[13] A. S. Kalashnikov,The propagation of disturbances of nonlinear heat conduction with absorption, USSR Comp. Math. Math. Phys.14 (1974), 70–85. · Zbl 0306.35060
[14] S. Kamin and L. A. Peletier,Source type solutions of degenerate diffusion equations with absorption, Isr. J. Math.50 (1985), 219–230. · Zbl 0581.35035
[15] S. Kamin and L. A. Peletier,Singular solutions of the heat equation with absorption, Proc. Am. Math. Soc.95 (1985), 205–210. · Zbl 0607.35046
[16] S. Kamin and L. A. Peletier,Large time behaviour of solutions of the heat equation with absorption, Ann. Scu. Norm. Sup. PisaXII (1985), 393–408. · Zbl 0598.35050
[17] S. Kamin and M. Ughi, to appear.
[18] F. B. Weissler,Rapidly decaying solutions of an ODE with application to semilinear elliptic and parabolic PDE’s, to appear.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.