zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Conditional association and unidimensionality in monotone latent variable models. (English) Zbl 0625.62102
Latent variable models represent the joint distribution of observable variables in terms of a simple structure involving unobserved or latent variables, usually assuming the conditional independence of the observable variables given the latent variables. These models play an important role in educational measurement and psychometrics, in sociology and in population genetics, and are implicit in some work on systems reliability. We study a broad class of latent variable models, namely the monotone unidimensional models, in which the latent variable is a scalar, the observable variables are conditionally independent given the latent variable and the conditional distribution of the observables given the latent variable is stochastically increasing in the latent variable. All models in this class imply a new strong form of positive dependence among the observable variables, namely conditional (positive) association. This positive dependence condition may be used to test whether any model in this class can provide an adequate fit to observed data. Various applications, generalizations and a numerical example are discussed.

62P15Applications of statistics to psychology
62H99Multivariate analysis
60E15Inequalities in probability theory; stochastic orderings
Full Text: DOI