zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Algorithms for the vehicle routing and scheduling problems with time window constraints. (English) Zbl 0625.90047
This paper considers the design and analysis for vehicle routing and scheduling problems with time window constraints. Given the intrinsic difficulty of this problem class, approximation methods seem to offer the most promise for practical size problems. After describing a variety of heuristics, we conduct an extensive computational study of their performance. The problem set includes routing and scheduling environments that differ in terms of the type of data used to generate the problems, the percentage of customers with time windows, their tightness and positioning, and the scheduling horizon. We found that several heuristics performed well in different problem environments; in particular an insertion-type heuristic consistently gave very good results.

MSC:
90B35Scheduling theory, deterministic
65K05Mathematical programming (numerical methods)
WorldCat.org
Full Text: DOI