On a certain new subclass of meromorphic close-to-convex functions. (English) Zbl 1296.30025

Summary: n this paper, we introduce and investigate a new subclass \(MK^{(k)}(\beta,\gamma)\) of meromorphic close-to-convex functions. For functions belonging to the class \(MK^{(k)}(\beta,\gamma)\), we obtain some coefficient inequalities and a distortion theorem. The results presented here would unify and extend some recent work of Z. Wang et al. [Acta Math. Acad. Paedagog. Nyházi. (N.S.) 22, No. 2, 171–177 (2006; Zbl 1120.30305)].


30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)


Zbl 1120.30305
Full Text: DOI


[1] doi:10.1016/j.amc.2007.04.065 · Zbl 1175.30028 · doi:10.1016/j.amc.2007.04.065
[2] doi:10.1016/j.amc.2011.03.069 · Zbl 1225.30007 · doi:10.1016/j.amc.2011.03.069
[3] doi:10.1016/j.camwa.2008.01.038 · Zbl 1165.30344 · doi:10.1016/j.camwa.2008.01.038
[4] doi:10.1016/j.aml.2011.09.035 · Zbl 1252.30015 · doi:10.1016/j.aml.2011.09.035
[5] doi:10.1016/j.aml.2010.03.004 · Zbl 1193.30018 · doi:10.1016/j.aml.2010.03.004
[6] doi:10.1016/j.amc.2011.03.018 · Zbl 1230.30011 · doi:10.1016/j.amc.2011.03.018
[7] doi:10.1016/j.aml.2010.10.037 · Zbl 1206.30035 · doi:10.1016/j.aml.2010.10.037
[8] doi:10.1186/1029-242X-2011-1 · doi:10.1186/1029-242X-2011-1
[9] doi:10.2140/pjm.1963.13.221 · Zbl 0116.05701 · doi:10.2140/pjm.1963.13.221
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.