×

Non-asymptotic deviation inequalities for smoothed additive functionals in nonlinear state-space models. (English) Zbl 1411.60116

Summary: The approximation of fixed-interval smoothing distributions is a key issue in inference for general state-space hidden Markov models (HMM). This contribution establishes non-asymptotic bounds for the forward filtering backward smoothing (FFBS) and the forward filtering backward simulation (FFBSi) estimators of fixed-interval smoothing functionals. We show that the rate of convergence of the L\(_{q}\)-mean errors of both methods depends on the number of observations \(T\) and the number of particles \(N\) only through the ratio \(T/N\) for additive functionals. In the case of the FFBS, this improves recent results providing bounds depending on \(T/\sqrt{N}\).

MSC:

60J55 Local time and additive functionals
60J22 Computational methods in Markov chains
62M05 Markov processes: estimation; hidden Markov models
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Briers, M., Doucet, A. and Maskell, S. (2010). Smoothing algorithms for state-space models. Ann. Inst. Statist. Math. 62 61-89. · Zbl 1422.62297 · doi:10.1007/s10463-009-0236-2
[2] Cappé, O., Moulines, E. and Rydén, T. (2005). Inference in Hidden Markov Models. Springer Series in Statistics . New York: Springer. · Zbl 1080.62065
[3] Davidson, J. (1997). Stochastic Limit Theory . Oxford: Oxford University Press. · Zbl 0904.60002
[4] Del Moral, P. (2004). Feynman-Kac Formulae : Genealogical and Interacting Particle Systems with Applications. Probability and Its Applications ( New York ). New York: Springer. · Zbl 1130.60003
[5] Del Moral, P., Doucet, A. and Singh, S.S. (2010). A backward particle interpretation of Feynman-Kac formulae. M 2 AN Math. Model. Numer. Anal. 44 947-975. · Zbl 1209.65009 · doi:10.1051/m2an/2010048
[6] Del Moral, P., Doucet, A. and Singh, S.S. (2010). Forward smoothing using sequential Monte Carlo. Technical report, Cambridge Univ. Available at . 1012.5390v1
[7] Del Moral, P. and Guionnet, A. (2001). On the stability of interacting processes with applications to filtering and genetic algorithms. Ann. Inst. Henri Poincaré Probab. Stat. 37 155-194. · Zbl 0990.60005 · doi:10.1016/S0246-0203(00)01064-5
[8] Douc, R., Garivier, A., Moulines, E. and Olsson, J. (2011). Sequential Monte Carlo smoothing for general state space hidden Markov models. Ann. Appl. Probab. 21 2109-2145. · Zbl 1237.60026 · doi:10.1214/10-AAP735
[9] Doucet, A., Godsill, S. and Andrieu, C. (2000). On sequential Monte-Carlo sampling methods for Bayesian filtering. Statist. Comput. 10 197-208.
[10] Durbin, J. and Koopman, S.J. (2000). Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives. J. R. Stat. Soc. Ser. B Stat. Methodol. 62 3-56. With discussion and a reply by the authors. · Zbl 0945.62084 · doi:10.1111/1467-9868.00218
[11] Godsill, S.J., Doucet, A. and West, M. (2004). Monte Carlo smoothing for non-linear time series. J. Amer. Statist. Assoc. 50 438-449. · Zbl 1089.62517
[12] Hall, P. and Heyde, C.C. (1980). Martingale Limit Theory and Its Application. Probability and Mathematical Statistics . New York: Academic Press. · Zbl 0462.60045
[13] Hull, J. and White, A. (1987). The pricing of options on assets with stochastic volatilities. J. Finance 42 281-300. · Zbl 1126.91369
[14] Hürzeler, M. and Künsch, H.R. (1998). Monte Carlo approximations for general state-space models. J. Comput. Graph. Statist. 7 175-193.
[15] Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Statist. 5 1-25.
[16] Pitt, M.K. and Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. J. Amer. Statist. Assoc. 94 590-599. · Zbl 1072.62639 · doi:10.2307/2670179
[17] Poyiadjis, G., Doucet, A. and Singh, S.S. (2011). Particle approximations of the score and observed information matrix in state space models with application to parameter estimation. Biometrika 98 65-80. · Zbl 1214.62093 · doi:10.1093/biomet/asq062
[18] West, M. and Harrison, J. (1989). Bayesian Forecasting and Dynamic Models. Springer Series in Statistics . New York: Springer. · Zbl 0697.62029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.