×

zbMATH — the first resource for mathematics

Generalized Gauss maps and integrals for three-component links: toward higher helicities for magnetic fields and fluid flows. (English) Zbl 1328.57007
Summary: To each three-component link in the 3-sphere we associate a generalized Gauss map from the 3-torus to the 2-sphere, and show that the pairwise linking numbers and Milnor triple linking number that classify the link up to link homotopy correspond to the Pontryagin invariants that classify its generalized Gauss map up to homotopy. We view this as a natural extension of the familiar situation for two-component links in 3-space, where the linking number is the degree of the classical Gauss map from the 2-torus to the 2-sphere. The generalized Gauss map, like its prototype, is geometrically natural in the sense that it is equivariant with respect to orientation-preserving isometries of the ambient space, thus positioning it for application to physical situations. When the pairwise linking numbers of a three-component link are all zero, we give an integral formula for the triple linking number analogous to the Gauss integral for the pairwise linking numbers. This new integral is also geometrically natural, like its prototype, in the sense that the integrand is invariant under orientation-preserving isometries of the ambient space. Versions of this integral have been applied by Komendarczyk in special cases to problems of higher order helicity and derivation of lower bounds for the energy of magnetic fields. We have set this entire paper in the 3-sphere because our generalized Gauss map is easiest to present here, but in a subsequent paper we will give the corresponding maps and integral formulas in Euclidean 3-space.{
©2013 American Institute of Physics}

MSC:
57M25 Knots and links in the \(3\)-sphere (MSC2010)
78A25 Electromagnetic theory (general)
76W05 Magnetohydrodynamics and electrohydrodynamics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.2307/1969685 · Zbl 0055.16901
[2] Pontryagin L., Rec. Math. [Mat. Sb.] N. S. 9 (51) pp 331– (1941)
[3] DeTurck D., Mat. Contemp. 34 pp 251– (2008)
[4] Milnor J., A symposium in honor of S. Lefschetz pp 280– (1957)
[5] DOI: 10.2140/agt.2003.3.557 · Zbl 1040.57007
[6] Matveev S. V., Mat. Zametki 42 pp 268– (1987)
[7] DOI: 10.1007/BF01443506 · Zbl 0646.57005
[8] DOI: 10.1007/BF01457962 · Zbl 0001.40703
[9] Milnor J. W., Princeton Landmarks in Mathematics, in: Topology from the Differentiable Viewpoint (1997) · Zbl 1025.57002
[10] DOI: 10.1007/BF02566923 · Zbl 0057.15502
[11] DOI: 10.2307/121005 · Zbl 0919.57012
[12] DOI: 10.1007/s12044-007-0025-x · Zbl 1127.57002
[13] DOI: 10.1007/s00220-005-1289-6 · Zbl 1082.58017
[14] DOI: 10.1073/pnas.33.5.117 · Zbl 0030.07902
[15] Folland G. B., Introduction to Partial Differential Equations, 2. ed. (1995) · Zbl 0841.35001
[16] Massey W. S., Conference on Algebraic Topology (Univ. of Illinois at Chicago Circle, Chicago, Ill., 1968) pp 174– (1969)
[17] DOI: 10.1112/blms/7.1.39 · Zbl 0312.55003
[18] Turaev V. G., Zap. Nauchn. Semin. LOMI 66 pp 189– (1976)
[19] DOI: 10.1090/S0002-9947-1980-0549154-9
[20] Fenn R. A., London Mathematical Society Lecture Note Series 57, in: Techniques of Geometric Topology (1983) · Zbl 0517.57001
[21] DOI: 10.1007/BF01393902 · Zbl 0668.57014
[22] Cochran T. D., Mem. Am. Math. Soc. 84 (1990)
[23] DOI: 10.1090/S0894-0347-1990-1026062-0
[24] Gauss C. F., Zur Mathematischen Theorie der Electrodynamische Wirkungen (Collected Works) 5 pp 605– (1833)
[25] DOI: 10.1063/1.2827467 · Zbl 1153.81348
[26] DOI: 10.1007/s00039-008-0669-4 · Zbl 1169.52004
[27] DOI: 10.1007/BF02993127 · Zbl 0165.57102
[28] DOI: 10.1512/iumj.1985.34.34022 · Zbl 0575.57011
[29] DeTurck D., Mat. Contemp. 34 pp 239– (2008)
[30] DOI: 10.1090/S0002-9939-2010-10603-2 · Zbl 1221.57038
[31] DOI: 10.1016/0040-9383(96)00018-3 · Zbl 0876.57038
[32] DOI: 10.1073/pnas.44.6.489 · Zbl 0081.21703
[33] DOI: 10.1017/S0022112069000991 · Zbl 0159.57903
[34] Arnold V. I., Applied Mathematical Sciences 125, in: Topological Methods in Hydrodynamics (1998)
[35] DOI: 10.1016/j.geomphys.2010.04.001 · Zbl 1206.57033
[36] DOI: 10.1007/s00220-009-0896-z · Zbl 1206.57007
[37] DOI: 10.1063/1.3516611 · Zbl 1314.57007
[38] Massey W. S., International Symposium on Algebraic Topology pp 145– (1958)
[39] DOI: 10.1007/BF01211760 · Zbl 0588.57009
[40] DOI: 10.1088/0305-4470/23/13/017 · Zbl 0711.57008
[41] DOI: 10.1088/0305-4470/24/17/019 · Zbl 0747.57002
[42] DOI: 10.1016/0550-3213(90)90124-V
[43] DOI: 10.1007/978-94-017-3550-6_12
[44] DOI: 10.1063/1.870835
[45] DOI: 10.1016/0393-0440(94)00008-R · Zbl 0836.57005
[46] DOI: 10.1063/1.533299 · Zbl 0971.57019
[47] DOI: 10.1103/PhysRevD.66.125007
[48] DOI: 10.1088/0305-4470/35/17/309 · Zbl 1040.76067
[49] DOI: 10.4310/AJM.2002.v6.n3.a6 · Zbl 1045.57017
[50] Khesin B. A., Mosc. Math. J. 3 pp 989– (2003)
[51] DOI: 10.1103/PhysRevLett.92.030406 · Zbl 1267.78004
[52] DOI: 10.1016/j.geomphys.2004.06.002 · Zbl 1070.57007
[53] DOI: 10.1142/S0217732308023979 · Zbl 1141.81330
[54] DOI: 10.2140/gtm.2002.4.143
[55] DOI: 10.1007/BF03024401 · Zbl 0918.01017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.