Poghosyan, Lusine; Poghosyan, Arnak Asymptotic estimates for the quasi-periodic interpolations. (English) Zbl 1283.42005 Armen. J. Math. 5, No. 1, 34-57 (2013). Summary: We investigate the convergence of the quasi-periodic interpolation on the entire interval \([-1,1]\) in the \(L_2\)-norm and at the endpoints of the interval by the behavior of the limit function. In both cases we derive exact constants for the main terms of the asymptotic errors. The results of numerical experiments confirm theoretical estimates and show the behavior of the quasi-periodic interpolation for specific functions. Cited in 2 Documents MSC: 42A15 Trigonometric interpolation 65D05 Numerical interpolation Keywords:trigonometric interpolation; quasi-periodic interpolation; convergence acceleration; asymptotic estimates PDF BibTeX XML Cite \textit{L. Poghosyan} and \textit{A. Poghosyan}, Armen. J. Math. 5, No. 1, 34--57 (2013; Zbl 1283.42005) Full Text: Link