×

zbMATH — the first resource for mathematics

The Gruneisen parameter for silver azide. (English. Russian original) Zbl 1282.80005
Russ. Phys. J. 54, No. 7, 765-772 (2011); translation from Izv. Vyssh. Uchebn. Zaved., Fiz., No. 7, 35-41 (2011).
Summary: A first-principle procedure is proposed to determine the Gruneisen parameter for a crystal by calculating the external pressure and the vibration spectrum as functions of the volume of a unit cell. In the gradient approximation of the electron density functional theory, on the basis of a linear combination of atomic orbitals, the elastic and the thermodynamic Gruneisen parameters of silver azide, which decrease with volume (with increasing pressure), are calculated with the use of the CRYSTAL09 code. The equilibrium values of the parameter \(\gamma_0\) for various cold equations of state of crystals and for the thermodynamic models used are, respectively, \(\sim 2.3\) and 1.6.
MSC:
80A25 Combustion
Software:
CRYSTAL; CRYSTAL09
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. M. Lisitsyn, V. I. Oleshko, and V. P. Tsipilev, Russ. Phys. J., No. 2, 109–116 (2005).
[2] V. M. Lisitsyn, V. I. Oleshko, Yu. N. Zhuravlev, et al., Khim. Fiz., 25, 59 (2006).
[3] R. Dovesi, V. R. Saunders, C. Roetti, et al., CRYSTAL 09 User’s Manual, University of Torino Publ., Torino (2010).
[4] J. P. Perdew and Y. Wang, Phys. Rev. B, 45, 13244 (1992).
[5] Internet resource: www.crystal.initio.it/Basic_Set/ptable.html . · Zbl 0945.93504
[6] J. Shanker, B. P. Singh, and K. Jitendra, Cond. Matter Phys., 12, No. 2, 205 (2009).
[7] P. K. Singh, Indian J. Pure Appl. Phys., 48, 403 (2010).
[8] L. Burakovsky and D. L. Preston, J. Phys. Chem. Solids, 65, No. 8/9, 1581 (2004).
[9] F. Birch, J. Geophys. Res., 83, 1257 (1978).
[10] P. Vinet, J. Ferrante, J. H. Rose, and J. R. Smith, J. Geophys. Res., 92, 9319 (1987).
[11] W. B. Holzapfel, Rep. Prog. Phys., 59, 29 (1996).
[12] J. H. Li, S. H. Liang, H. B. Guo, and B. X. Liu, Appl. Phys. Lett., 87, 194111 (2005).
[13] F. D. Stacey, B. J. Brennan, and R. D. Irvine, Geophys. Surv., 4, 189 (1981).
[14] J. Shanker, S. S. Kushwah, and P. Kumar, Physica B, 239, 337 (1997).
[15] R. E. Cohen, O. Gülseren, and R. J. Hemley, Am. Mineralogist, 85, 338 (2000).
[16] A. B. Alchagirov, J. P. Perdew, J. C. Boettger, et al., Phys. Rev. B, 63, 224115 (2001).
[17] S. S. Kushwah and J. Shanker, Physica B, 253, 90 (1998).
[18] A. K. Pandey, Der Pharma Chemica, 1, No. 1, 78 (2009).
[19] J. C. Slater, Introduction to Chemical Physics, McGraw Hill, New York (1935).
[20] J. S. Dugdale and D. McDonald, Phys. Rev., 89, 832 (1953).
[21] V. N. Zubarev and V. Ya. Vaschenko, Fiz. Tverd. Tela, 5, 886 (1963).
[22] L. Burakovsky, D. L. Preston, and Y. Wang, Solid State Commun., 132, No. 3/4, 151 (2004).
[23] Y. Zhang, X. Ke, C. Chen, et al., Phys. Rev. B, 80, 024304 (2009).
[24] A. M. Molodets, Fiz. Gor. Vzryva, 31, No. 5, 132 (1995).
[25] G. Guo, Q. Wang, and T. C. W. Mak, J. Chem. Crystal., 29, No. 5, 561 (1999).
[26] W. B. Holzapfel, M. Hartwig, and W. Sievers, J. Phys. Chem. Ref. Data, 30, No. 2, 515 (2001).
[27] V. N. Belomestnykh, Pis’ma Zh. Tekh. Fiz., 30, No. 3, 14 (2004).
[28] V. N. Belomestnykh, E. P. Tesleeva, and E. G. Soboleva, Zh. Tekh. Fiz., 79, No. 2, 153 (2009).
[29] J. Bryant and R. Brooks, J. Chem. Phys., 54, No. 2, 5315 (1971).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.