×

Ramified torsion points on curves. (English) Zbl 0626.14022

The author uses his theory of p-adic integration to prove results about torsion-packets on algebraic curves, i.e. about points, P, Q, in a curve C such that some multiple of the divisor P-Q is principal. The integration theory implies that for any regular differential \(\omega\) the integral of \(\omega\) between P and Q vanishes. If in this integral we vary one of the endpoints we obtain an analytic function on C, and most of the paper deals with properties of this function, especially its zeroes. The final result implies the Manin-Mumford conjecture (which was proved by M. Raynaud).
Reviewer: G.Faltings

MSC:

14G20 Local ground fields in algebraic geometry
14F30 \(p\)-adic cohomology, crystalline cohomology
14H25 Arithmetic ground fields for curves
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] P. Berthelot and A. Ogus, \(F\)-isocrystals and de Rham cohomology. I , Invent. Math. 72 (1983), no. 2, 159-199. · Zbl 0516.14017 · doi:10.1007/BF01389319
[2] F. Bogomolov, Sur l’algébricité des représentations \(l\)-adiques , C.R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 15, 701-703. · Zbl 0457.14020
[3] F. Bogomolov, Torsion points on an ablelian variety , unpublished.
[4] R. Coleman, Torsion points on curves and \(p\)-adic abelian integrals , Ann. of Math. (2) 121 (1985), no. 1, 111-168. JSTOR: · Zbl 0578.14038 · doi:10.2307/1971194
[5] R. Coleman, Torsion points on Abelian covering of \(\mathbbP^1-\0,1,\infty\$ ,\) · Zbl 0818.53096
[6] R. Coleman, Hodge-Tate periods and \(p\)-adic Abelian integrals , Invent. Math. 78 (1984), no. 3, 351-379. · Zbl 0572.14024 · doi:10.1007/BF01388442
[7] R. Coleman, Torsion points on curves , · Zbl 0653.14015
[8] T. Ekedahi, On supersingular curves and abelian varieties , Orsay · Zbl 0641.14007
[9] N. Katz, Travaux de Dwork , Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 409, Springer, Berlin, 1973, 167-200. Lecture Notes in Math., Vol. 317. · Zbl 0259.14007
[10] N. M. Katz and S. Lang, Finiteness theorems in geometric classfield theory , Enseign. Math. (2) 27 (1981), no. 3-4, 285-319 (1982). · Zbl 0495.14011
[11] M. Raynaud, Géométrie analytique rigide d’après Tate, Kiehl,\(\cdots\) , Table Ronde d’Analyse non archimédienne (Paris, 1972), Soc. Math. France, Paris, 1974, 319-327. Bull. Soc. Math. France, Mém. No. 39-40. · Zbl 0299.14003
[12] M. Raynaud, Courbes sur une variété abélienne et points de torsion , Invent. Math. 71 (1983), no. 1, 207-233. · Zbl 0564.14020 · doi:10.1007/BF01393342
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.