Uniqueness and presentation of Kac-Moody groups over fields. (English) Zbl 0626.22013

In his famous paper, Chevalley has defined analogues over arbitrary fields of the complex simple Lie groups. Further, Chevalley and Demazure have constructed a certain group scheme G over \({\mathbb{Z}}\) associated to every reductive group over \({\mathbb{C}}\) which is characterized by a few simple properties, making G(R) for any commutative ring R the natural analogue of the group over R. The group schemes are classified by data \(D=(I,\Lambda,(\alpha_ i)_{i\in I}\), \((h_ i)_{i\in I})\) consisting of a finite set I, a finitely generated free abelian group \(\Lambda\), and two maps \(i\mapsto \alpha_ i\) and \(i\mapsto h_ i\) of I in \(\Lambda\) and in its dual \(\Lambda^{\vee}\), respectively, these data being subject only to the condition that the matrix \(A=(A_{ij})=(<\alpha_ j\), \(h_ i>)\) be a Cartan matrix. If we assume for A the only conditions \(A_{ii}=2\), \(A_{ij}\leq 0\) if \(i\neq j\) and \(A_{ij}=0 \Leftrightarrow A_{ij}=0\), then A is called a generalized Cartan matrix.
In this paper, to any data D with generalized Cartan matrix A, the author associates a group functor \(G_ D\) on the category of commutative rings with 1. Further, the author states a few axioms which should hold for any reasonable extension of the Chevalley-Demazure group schemes to the Kac- Moody situation and shows that any functor satisfying these axioms coincides with \(G_ D\) over fields.
The author has treated already these problems [cf. Annuaire College de France 82, 91-105 (1981/82)], but the present method is simpler and more direct and it is based on a presentation “à la Steinberg” of the Kac- Moody groups. An important feature of the situation is that it leads to groups endowed with two distinct BN-pairs having the same group N (double BN-pairs), and the new structure turns out to be much richer than that consisting of a single BN-pair.
These axiomatic characterization of Kac-Moody groups provides an easy answer to certain recognition problems. For instance, Chevalley groups of classical types are isomorphic with corresponding classical groups, that has been proved in various ways, and it also can be applied to Kac-Moody groups of affine types which also have “classical interpretation”. Further, the axiomatic set up should also apply to suitably defined twisted Kac-Moody groups.
Reviewer: E.Abe


22E65 Infinite-dimensional Lie groups and their Lie algebras: general properties
14L15 Group schemes
20F05 Generators, relations, and presentations of groups
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
20G25 Linear algebraic groups over local fields and their integers
20G15 Linear algebraic groups over arbitrary fields
Full Text: DOI


[1] Borel, A; Tits, J, Groupes Réductifs, Inst. hautes études sci. publ. math., 27, 55-150, (1965) · Zbl 0145.17402
[2] Bourbaki, N, Groupes et algèbres de Lie, (1968), Hermann Paris, Chaps. IV-VI · Zbl 0186.33001
[3] Bourbaki, N, Groupes et algèbres de Lie, (1975), Hermann Paris, Chaps. VII, VIII · Zbl 0329.17002
[4] Bruhat, F; Tits, J, Groupes réductifs sur un corps local. I. données radicielles valuées, Inst. hautes études sci. publ. math., 41, 5-251, (1972)
[5] Bruhat, F; Tits, J, Groupes réductifs sur un corps local. II. schémas en groupes. existence d’une donnée radicielle valuée, Inst. hautes études sci. publ. math., 60, 5-184, (1984)
[6] Chevalley, C, Sur certains groupes simples, Tohôku math. J., 7, 14-66, (1955), (2) · Zbl 0066.01503
[7] Chevalley, C, Certains schémas de groupes semi-simples, (), exposé 219 · Zbl 0125.01705
[8] Demazure, M, Schémas en groupes réductifs, Bull. soc. math. France, 93, 369-413, (1965) · Zbl 0163.27402
[9] Dieudonné, J, On simple groups of type Bn, Amer. J. math., 79, 922-923, (1957) · Zbl 0080.24902
[10] Garland, H, The arithmetic theory of loop algebras, J. algebra, 53, 480-551, (1978) · Zbl 0383.17012
[11] Garland, H, The arithmetic theory of loop groups, Inst. hautes études sci. publ. math., 52, 5-136, (1980) · Zbl 0475.17004
[12] Hée, J.-Y, Groupes de Chevalley et groupes classiques, (), 1-54
[13] Kac, V; Kac, V, Simple irreducible graded Lie algebras of finite growth, Izv. akad. nauk S.S.S.R. (ser. mat.), Math. U.S.S.R.—izv., 2, 1271-1311, (1968), Engl. Transl. · Zbl 0222.17007
[14] Kac, V, Infinite dimensional Lie algebras, () · Zbl 0716.17022
[15] Kac, V, Constructing groups associated to infinite-dimensional Lie algebras, (), 167-216
[16] Kac, V; Peterson, D, Regular functions on certain infinite-dimensional groups, (), 141-166
[17] Kac, V; Peterson, D, Defining relations of certain infinite-dimensional groups, (), 165-208
[18] Marcuson, R, Tits’ system in generalized non-adjoint Chevalley groups, J. algebra, 34, 84-96, (1975) · Zbl 0338.20054
[19] Moody, R; Teo, K, Tits’ systems with crystallographic Weyl groups, J. algebra, 21, 178-190, (1972) · Zbl 0232.20089
[20] Morita, J, Coverings, generators and relations of certain infinite-dimensional groups, (1983), preprint
[21] Peterson, D; Kac, V, Infinite flag varieties and conjugation theorems, (), 1778-1782 · Zbl 0512.17008
[22] Ree, R, On some simple groups defined by C. Chevalley, Trans. amer. math. soc., 84, 392-400, (1957) · Zbl 0078.01603
[23] Richen, F, Modular representations of split BN-pairs, Trans. amer. math. soc., 140, 435-460, (1969) · Zbl 0181.03801
[24] Serre, J.-P, Arbres, amalgames, SL2, Astérisque, 46, (1977)
[25] Slodowy, P, An, adjoint quotient for certain groups attached to Kac-Moody algebras, (), 307-333
[26] Tits, J, Groupes semi-simples isotropes, (), 137-147 · Zbl 0154.02601
[27] Tits, J, Sur LES constantes de structure et le théorème d’existence des algèbres de Lie semi-simples, Inst. hautes études sci. publ. math., 31, 21-58, (1966) · Zbl 0145.25804
[28] Tits, J, Buildings of spherical type and finite BN-pairs, () · Zbl 0295.20047
[29] Tits, J, Classification of buildings of spherical type and Moufang polygons: A survey, (), 229-246
[30] Tits, J, Résumé de cours, Annuaire collège de France, 81, 75-86, (1980-1981)
[31] Tits, J, Résumé de cours, Annuaire collège de France, 82, 91-105, (1981-1982)
[32] Tits, J, Définition par générateurs et relations de groupes avec BN-paires, C. R. acad. sci. Paris, 293, 317-322, (1981) · Zbl 0548.20019
[33] Tits, J, Groups and group functors attached to Kac-Moody data, (), 193-223
[34] Tits, J, Immeubles de type affine, (), 159-190
[35] {\scJ. Tits}, Ensembles ordonnés, immeubles et sommes amalgamées, Bull. Soc. Math. Belgique, in press.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.