On the accumulation of limit cycles. (English) Zbl 0626.34022

Author’s abstract: Limit cycles of a planar analytic system can only accumulate at a critical point or on a graphic; the critical points are isolated; and the inner and outer boundaries of any continuous band of cycles consist of either a critical point or graphic.
Reviewer: V.Sree Hari Rao


34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
Full Text: DOI


[1] H. Dulac, Sur les cycles limites, Bull. Soc. Math. France 51 (1923), 45 – 188 (French). · JFM 49.0304.01
[2] Carmen Chicone and Douglas S. Shafer, Separatrix and limit cycles of quadratic systems and Dulac’s theorem, Trans. Amer. Math. Soc. 278 (1983), no. 2, 585 – 612. · Zbl 0522.58041
[3] H. Poincaré, Mémoire sur les courbes définies par une equation différentielle, J. Mathématiques 7 (1881), 375-422; Oeuvre (1880-1890), Gauthier-Villar, Paris, pp. 1-221.
[4] J. P. Françoise and C. C. Pugh, Keeping track of limit cycles, Berkeley Report, PAM-239, 1984. · Zbl 0602.34019
[5] Ivar Bendixson, Sur les courbes définies par des équations différentielles, Acta Math. 24 (1901), no. 1, 1 – 88 (French). · JFM 31.0328.03 · doi:10.1007/BF02403068
[6] G. F. D. Duff, Limit-cycles and rotated vector fields, Ann. of Math. (2) 57 (1953), 15 – 31. · Zbl 0050.09103 · doi:10.2307/1969724
[7] Salomon Bochner and William Ted Martin, Several Complex Variables, Princeton Mathematical Series, vol. 10, Princeton University Press, Princeton, N. J., 1948. · Zbl 0041.05205
[8] A. A. Andronov et al., Theory of bifurcations of dynamical systems on a plane, Kefer Press, Jerusalem, 1971.
[9] Lawrence M. Perko and Shih Lung Shü, Existence, uniqueness, and nonexistence of limit cycles for a class of quadratic systems in the plane, J. Differential Equations 53 (1984), no. 2, 146 – 171. · Zbl 0493.34025 · doi:10.1016/0022-0396(84)90037-8
[10] Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. · Zbl 0064.33002
[11] Morris W. Hirsch and Stephen Smale, Differential equations, dynamical systems, and linear algebra, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Pure and Applied Mathematics, Vol. 60. · Zbl 0309.34001
[12] A. A. Andronov et al., Qualitative theory of second order dynamical systems, Wiley, New York, 1973.
[13] L. M. Perko, Center-foci for analytic systems (in preparation).
[14] Yu. S. Il\(^{\prime}\)yashenko, Limit cycles of polynomial vector fields with nondegenerate singular points on the real plane, Funktsional. Anal. i Prilozhen. 18 (1984), no. 3, 32 – 42 (Russian). · Zbl 0549.34033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.