zbMATH — the first resource for mathematics

Estimation of the coefficients of a diffusion from discrete observations. (English) Zbl 0626.62085
The estimation of the parameters of a diffusion process sampled at equally spaced time points is studied. The loss of information due to discretization is measured as a function of the sampling interval.

62M05 Markov processes: estimation; hidden Markov models
Full Text: DOI
[1] DOI: 10.1016/S0020-0255(69)80013-7
[2] Astrom K. J., Computer Controlled Systems (1984)
[3] Azencott R., Grandes deviations et applications, St Flour VII, Lecture Notes in Math (1978)
[4] Dacunha-Castelle D., Probabilites et Statistiques 2. Problems a temps mobile (1983) · Zbl 0535.62004
[5] Dacunha-Castelle D., Exercises de Proba. et Stat. 2, Problems a temps mobile (1984)
[6] Dacunha-Castelle D., Time-discretization effect for the estimation of the parameter of a differential stochastic equation, Prepublication, Orsay no. 84 T 39, Univ. Paris-Sud
[7] Dohnai G., On estimating the diffusion coefficient, Preprint
[8] Florens-Zmirou, D.Theoreme de limite centrale pour une diffusion et sa discretisee, C R A S TVol. 19, 995–998. · Zbl 0592.60018
[9] Ito K., Diffusion Processes and Their Sample Paths (1974) · Zbl 0285.60063
[10] Gikman-Skorokhod, Introduction a la theorie des processus aleatoires, MIR (1980)
[11] Goodwin G., Dynamic System Identification (1997)
[12] Kutoyants Y., Estimation des parametres dwe processus stochastiques (1980)
[13] Mandl P., Estimation and control in Markov chains (1974) · Zbl 0281.60070
[14] DOI: 10.1070/RM1975v030n01ABEH001400 · Zbl 0315.53026
[15] Revuz D., Markov Chains (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.