Wilkinson, J. H. The algebraic eigenvalue problem. 1. paperback ed. (English) Zbl 0626.65029 Monographs on Numerical Analysis. Oxford Science Publications. Oxford: Clarendon Press. XVIII, 662 p.; £20.00 (1988). See the review of the first edition (1965; Zbl 0258.65037). Cited in 1 ReviewCited in 111 Documents MSC: 65F15 Numerical computation of eigenvalues and eigenvectors of matrices 15-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to linear algebra 65-02 Research exposition (monographs, survey articles) pertaining to numerical analysis 15A42 Inequalities involving eigenvalues and eigenvectors 15A18 Eigenvalues, singular values, and eigenvectors 15A21 Canonical forms, reductions, classification 15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory 65G50 Roundoff error 65F35 Numerical computation of matrix norms, conditioning, scaling 65F05 Direct numerical methods for linear systems and matrix inversion 65F10 Iterative numerical methods for linear systems 65F25 Orthogonalization in numerical linear algebra Keywords:matrix eigenvalue; perturbation theory; error analysis; Hermitian matrices; reduction to condensed form; LR algorithm; QR algorithm; advanced exposition Citations:Zbl 0258.65037 PDF BibTeX XML Cite \textit{J. H. Wilkinson}, The algebraic eigenvalue problem. 1. paperback ed. Oxford (UK): Clarendon Press (1988; Zbl 0626.65029) OpenURL Digital Library of Mathematical Functions: §3.2(vi) Lanczos Tridiagonalization of a Symmetric Matrix ‣ §3.2 Linear Algebra ‣ Areas ‣ Chapter 3 Numerical Methods §3.2(vii) Computation of Eigenvalues ‣ §3.2 Linear Algebra ‣ Areas ‣ Chapter 3 Numerical Methods §3.2(v) Condition of Eigenvalues ‣ §3.2 Linear Algebra ‣ Areas ‣ Chapter 3 Numerical Methods