zbMATH — the first resource for mathematics

An analysis of the B.P.M. approximation of the Helmholtz equation in an optical fiber. (English) Zbl 0626.65136
The electric field, due to a single frequency (\(\omega)\) light, inside an optical fiber is assumed to be of the form \(A(x,\omega)\exp.-ik_ 0x_ 3\), \((k_ 0=\omega n_ 0/c)\). The equation for the envelope function A(x,\(\omega)\), supposed to vary slowly over a single wave length is \[ (E)\quad -2ik_ 0(\partial A/\partial x^ 2_ 3)+(\partial^ 2A/\partial x^ 2_ 3)+\Delta_{\perp}A+(\omega^ 2/c^ 2)(n^ 2- n_ 0^ 2)A=0. \] Here \(\Delta_{\perp}\) is the transverse part of the Laplace operator. The refractive index n has small variation from the reference value \(n_ 0\). The ‘Beam Propagation Method (B.P.M.)’ algorithm is based on a discretization in \(x_ 3\) direction, in which, for the first and third intervals of length \(\Delta x_ 3/2\) each, the last term of eq. (E) is neglected and in the central interval \((\Delta x_ 3)\), the second term is droped, and further only the wave propagating in the \(x_ 3\) direction is retained. In this paper, the authors derive formally the continuous equation \((\Delta x_ 3\to 0)\), which is consistent with the B.P.M. algorithm. This equation is obtained by replacing the second and third terms of eq. (E) by a convolution term with A(x,\(\omega)\). Next, the authors give a mathematical framework that allows one to prove the existence and uniqueness of a solution of the B.P.M. equation. Finally, the long time behaviour of these solutions and the dependence of solutions on n are studied.
Reviewer: N.D.Sengupta
65Z05 Applications to the sciences
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
78A40 Waves and radiation in optics and electromagnetic theory
Full Text: DOI EuDML
[1] A. BAMBERGER, F. CORON and J. M. GHIDAGLIA, Analyse de la B.P.M.,méthode de résolution approchée de l’équation d’Helmholtz dans une fibreoptique, modélisation, convergence et stabilité. Rapport interne de l’ÉcolePolytechnique 151, Palaiseau, France, 1986.
[2] J. T. BEALE and A. MAJDA, Rates of convergence for viscous splitting of the Navier-Stokes équations. Math. Comput. 37, 243-260 (1981). Zbl0518.76027 MR628693 · Zbl 0518.76027 · doi:10.2307/2007424
[3] M. D. FEIT and J. A. FLECK, Light propagation in graded-index optical fibers, AppL Opt. 17, 3990-3998 (1978).
[4] R. A. FISCHER and W. K. BISCHEL, Numerical studies of the interplay betweenself phase modulation and dispersion for intense plane wave laser puises, J.Appl. Phys. 46, 4921-4934 (1975).
[5] A. FRIEDMAN, Partial differential équations, Holt Rinehart and Winston Inc., New York, 1969. Zbl0224.35002 MR445088 · Zbl 0224.35002
[6] J. L. LIONS, Quelques méthodes de résolution desproblèmes aux limites nonlinéaires, Dunod, Paris, 1969. Zbl0189.40603 · Zbl 0189.40603
[7] J. L. LIONS and E. MAGENES, Nonhomogeneous boundary value problems andapplications, Springer, Berlin, 1972 (and Dunod, Paris 1968). Zbl0223.35039 · Zbl 0223.35039
[8] L. SCHWARTZ, Théorie des distributions, Hermann, Paris, 1966. Zbl0149.09501 MR209834 · Zbl 0149.09501
[9] E. STEIN and G. WEISS, Fourier analysis in euclidian spaces, Princeton, 1971. · Zbl 0232.42007
[10] R. TEMAM, Sur la stabilité et la convergence de la méthode des pas fractionnaires, Ann. Math. Pura. AppL LXXIV, 1968, p.191-380. Zbl0174.45804 MR241838 · Zbl 0174.45804 · doi:10.1007/BF02415183
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.