Hadhri, Taib Étude dans \(HB\times BD\) d’un modèle de plaques élastoplastiques comportant une non-linéarité géométrique. (Study of a model of geometrical nonlinear elasto-plastic plates in \(HB\times BD)\). (French) Zbl 0626.73036 RAIRO, Modélisation Math. Anal. Numér. 19, 235-283 (1985). The author considers the mathematical model concerning bending and compression of a plate consituted by elasto-plastic material without hardening, assuming a geometrical nonlinearity. The boundary conditions are relaxed partially, and the solution is looked for by introducing and solving a relaxed problem and by proving the equivalence between these two problems. Reviewer: V.Brčić Cited in 1 ReviewCited in 3 Documents MSC: 74B99 Elastic materials 74C99 Plastic materials, materials of stress-rate and internal-variable type 74D99 Materials of strain-rate type and history type, other materials with memory (including elastic materials with viscous damping, various viscoelastic materials) 74K20 Plates Keywords:bending; compression; elasto-plastic material; geometrical nonlinearity; relaxed problem PDFBibTeX XMLCite \textit{T. Hadhri}, RAIRO, Modélisation Math. Anal. Numér. 19, 235--283 (1985; Zbl 0626.73036) Full Text: DOI EuDML References: [1] J. BARBE, Structures coques. Équations générales et stabilité, Cours de l’École Nationale Supérieure de l’Aéronautique et de l’Espace, chapitre 1 (1980). [2] J. L. BATOZ, Communication personnelle. [3] P. BLANCHARD, Une justification de modèles de plaques viscoplastiques, RAIRO, à paraître. Zbl0563.73038 · Zbl 0563.73038 [4] P. G. CIARLET, P. A. DESTUYNDER, Justification of a nonlinear in plate theory, Comp. Methods in Applied Mech. Engen. 17/18, pp. 227-258 (1979). Zbl0405.73050 · Zbl 0405.73050 · doi:10.1016/0045-7825(79)90089-6 [5] J. DIEUDONNE, Éléments d’analyse, Tome, 2, Gauthier-Villars, Paris (1974). [6] F. DEMENGEL, Problèmes Variationnels en plasticité parfaite des plaques, Thèse de 3e cycle, Université de Paris-Sud, Orsay (1982). MR702462 [7] F. DEMENGEL, R. TEMAM, Convex Function of a Measure and Applications, Indiana Journal of Mathematics, à paraître. · Zbl 0581.46036 [8] I. EKELAND, R. TEMAM, Analyse convexe et problèmes variationnels, Études Mathématiques, Dunod, Gauthier-Villars, Paris (1974). Zbl0281.49001 MR463993 · Zbl 0281.49001 [9] P. GERMAIN, Mécanique des Milieux Continus, Masson, Paris (1973), Zbl0121.41303 · Zbl 0121.41303 [10] T. HADHRI, A Model for the Buckling and the Siability of Thin Elastoplastic Plates, J. Math. Anal. Appl., à paraître. Zbl0584.73050 MR803422 · Zbl 0584.73050 · doi:10.1016/0022-247X(85)90337-3 [11] T. HADHRI, Étude de Modèles de Plaques Élastoplastiques, Thèse de Docteur Ingénieur, Université Pierre et Marie, Curie, Paris (1981). [12] NGUYEN QUOC-SON, Loi de Comportement Elastoplastique des Plaques et des Coques Minces, Rapport Interne n^\circ 1, Lab. de Mécanique des Solides, Ecole Polytechnique. [13] NGUYEN QUOC-SON, Communication personnelle. [14] M. POTIER FERRY, Fondements Mathématiques de la Théorie de la Stabilité Elastique, Thèse d’Etat, Université Pierre et Marie Curie (1977). [15] M.A. SAVE, C. E. MASSONNET, Plastic Analysis and Design of Plates. Shells and Disks, North Holland Publishing Compagny (1972). Zbl0232.73071 · Zbl 0232.73071 [16] R. TEMAN, Problèmes Mathématiques en Plasticité, Collection Méthodes Mathématiques de l’Informatique, Gauthier-Villars, Paris (1983). Zbl0547.73026 MR711964 · Zbl 0547.73026 [17] R. TEMAM, G. STRANG, Duality and Relaxation in the Variational Problems of Plasticity, J. Mécanique, 19, pp.493-527 (1980). Zbl0465.73033 MR595981 · Zbl 0465.73033 [18] R. TEMAM, Approximation de Fonctions Convexes sur un Espace de Mesures et Applications, Cand. Math. Bull, 25 (1982). Zbl0507.49011 MR674555 · Zbl 0507.49011 · doi:10.4153/CMB-1982-058-7 [19] E. H. ZARANTONELLO, Contribution to Nonlinear Fonctional Analysis, Academic Press, New York, London, pp. 237-341 (1971). Zbl0263.00001 MR388177 · Zbl 0263.00001 [20] [20] F. DEMENGEL, Fonctions à Hessien borné, Annales de l’Institut Fourier (février 1984). Zbl0525.46020 MR746501 · Zbl 0525.46020 · doi:10.5802/aif.969 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.