Turbulent thermal in a stratified atmosphere. (English. Russian original) Zbl 0626.76115

Fluid Dyn. 21, 965-976 (1986); translation from Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 1986, No. 6, 141-153 (1986).
An approximate analytic model of a turbulent thermal in a stratified atmosphere is proposed. This model makes it possible to predict the dynamics of the ascent, suspension and oscillation processes of a buoyant cloud both within the troposphere and on entering the stratosphere. The values of the heat energy needed for the thermal to penetrate the tropopause in northern and southern latitudes are estimated.
Estimates are obtained for the amount of material dumped into the stratosphere. A method of determining the thermal energy of volcanic eruptions of the explosive type is proposed.


76V05 Reaction effects in flows
76F99 Turbulence
86A10 Meteorology and atmospheric physics
Full Text: DOI


[1] Ya. B. Zel’dovich, ”Limiting laws of freely ascending convective flows,” Zh. Eksp. Teor. Fiz.,7, 1463 (1937).
[2] Yu. A. Gostintsev, L. A. Sukhanov, and A. F. Solodovnik, ”Limiting laws of unsteady, freely ascending turbulent convective motions in the atmosphere,” Dokl. Akad. Nauk SSSR,252, 311 (1980).
[3] B. R. Morton, G. I. Taylor, and J. S. Turner, ”Turbulent gravitational convection from maintained and instantaneous sources,” Proc. R. Soc. London, Ser. A:234, 1 (1956). · Zbl 0074.45402
[4] C. P. Wang, ”Motion of turbulent buoyant thermal in a calm stably stratified atmosphere,” Phys. Fluid,16, 744 (1973).
[5] A. M. Grishin, N. A. Alekseev, O. I. Brabander, and V. F. Zal’mezh, ”Propagation of forest fire thermals in the surface layer of the atmosphere,” in: Thermophysics of Forest Fires [in Russian], Novosibirsk (1984), pp. 76–85.
[6] B. R. Morton, ”Weak thermal vortex rings,” J. Fluid Mech.,9, 107 (1960). · Zbl 0094.40102
[7] V. M. Mal’bakhov, ”Theory of thermals in a stationary atmosphere,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana,8, 683 (1972).
[8] Yu. A. Gostintsev and L. A. Sukhanov, ”Turbulent concentration-temperature thermal with high viscosity in an unstratified medium” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 153 (1984). · Zbl 0574.76059
[9] Yu. A. Gostintsev, A. F. Solodovnik, and V. V. Lazarev, ”Theory of aerodynamics, autoignition and combustion of turbulent thermals, vortex rings and jets in a free atmosphere,” Khim. Fiz., No. 9, 1279 (1982).
[10] Yu. A. Gostintsev, ”Turbulent heat and mass transfer between a rising cloud of combustion products and the surrounding atmosphere,” in: Heat and Mass Transfer in Chemically Reacting Systems [in Russian], Minsk (1983), pp. 3–11.
[11] Yu. A. Gostintsev, A. F. Solodovnik, V. V. Lazarev, and Yu. V. Shatskikh, ”Turbulent thermal in a stratified atmosphere,” Preprint [in Russian], Institute of Chemical Physics, USSR Academy of Sciences, Moscow (1985). · Zbl 0626.76115
[12] E. E. Gossard and W. H. Hook, Waves in Atmosphere, Elsevier Sci. Publ. Co., Amsterdam (1975).
[13] B. A. Lugovtsov, ”Motion of a turbulent vortex ring transporting a passive impurity,” in: Some Problems of Mathematics and Mechanics [in Russian], Nauka, Moscow (1970), pp. 182–189.
[14] S. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1962). · Zbl 0111.44301
[15] A. T. Onufriev, ”Theory of motion of a vortex ring under the influence of gravity. Ascent of cloud from an atomic explosion,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 3 (1967).
[16] G. Glasstone and J. Dolan, ”The effects of nuclear weapons,” US Dept. Defense, 653 (1977).
[17] W. Kellogg, R. Rann, and S. Greenfield, ”Short-range fallout from an atomic explosion,” in: Meteorology and Atomic Energy [Russian translation], Izd. Inostr. Lit., Moscow (1959), pp. 243–255.
[18] R. P. Turko, O. V. Toon, T. P. Ackerman, J. B. Pollack, and C. Sagan, ”Nuclear winter: global consequences of multiple nuclear explosions,” Science,222, 1283 (1983).
[19] E. A. Bauer, ”Catalog of perturbing influences on stratospheric ozone. 1955–1975,” J. Geophys. Res., C84, 6929 (1979).
[20] L. Machta, ”Entrainment and the maximum height of an atomic cloud,” Bull. Am. Meteorol. Soc,31, 215 (1950).
[21] K. Telegadas, ”Estimation of maximum credible atmospheric radioactivity concentrations and dose rates from nuclear tests,” Atmos. Environ.,13, 327 (1979).
[22] L. Wilson, R. S. Sparks, T. S. Haung, and N. D. Watkins, ”The control of volcanic column heights by eruption energetics and dynamics,” J. Geophys. Res., B83, 1829 (1978).
[23] S. A. Fedotov, ”Estimation of the entrainment of heat and pyroclastics by volcanic eruptions and fumaroles from the height of their jets and clouds,” Vulkanologiya i Seismologiya, No. 4, 3 (1982).
[24] P. P. Firstov, P. I. Tokarev, V. K. Lemzikov, ”Motion-picture record of the eruption and model of the explosive process of the Karymskii volcano,” Byull. Vulkanol. Stn., No. 55, 151 (1978).
[25] T. Minakami, ”On explosive activities of andesic volcanos and their forerunning phenomena,” Bull. Volcanol. Ser. II,10, 59 (1950).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.