zbMATH — the first resource for mathematics

Computation of viability kernels: a case study of by-catch fisheries. (English) Zbl 1282.91249
Summary: Traditional means of studying environmental economics and management problems consist of optimal control and dynamic game models that are solved for optimal or equilibrium strategies. Notwithstanding the possibility of multiple equilibria, the models’ users – managers or planners – will usually be provided with a single optimal or equilibrium strategy no matter how reliable, or unreliable, the underlying models and their parameters are. In this paper we follow an alternative approach to policy making that is based on viability theory. It establishes “satisficing” (in the sense of Simon), or viable, policies that keep the dynamic system in a constraint set and are, generically, multiple and amenable to each manager’s own prioritisation. Moreover, they can depend on fewer parameters than the optimal or equilibrium strategies and hence be more robust. For the determination of these (viable) policies, computation of “viability kernels” is crucial. We introduce a MATLAB application, under the name of VIKAASA, which allows us to compute approximations to viability kernels. We discuss two algorithms implemented in VIKAASA. One approximates the viability kernel by the locus of state space positions for which solutions to an auxiliary cost-minimising optimal control problem can be found. The lack of any solution implies the infinite value function and indicates an evolution which leaves the constraint set in finite time, therefore defining the point from which the evolution originates as belonging to the kernel’s complement. The other algorithm accepts a point as viable if the system’s dynamics can be stabilised from this point. We comment on the pros and cons of each algorithm. We apply viability theory and the VIKAASA software to a problem of by-catch fisheries exploited by one or two fleets and provide rules concerning the proportion of fish biomass and the fishing effort that a sustainable fishery’s exploitation should follow.

91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
90B50 Management decision making, including multiple objectives
90B90 Case-oriented studies in operations research
49M30 Other numerical methods in calculus of variations (MSC2010)
Full Text: DOI
[1] Arnason R (1998) Ecological fisheries management using individual transferable share quotas. Ecol Appl 8(sp1):151–159
[2] Aubin JP (1991) Viability theory. Systems & control: foundations & applications. Birkhäuser, Boston. doi: 10.1007/978-0-8176-4910-4
[3] Aubin JP (2001) Viability kernels and capture basins of sets under differential inclusions. SIAM J Control Optim 40:853–881. doi: 10.1137/S036301290036968X · Zbl 1025.49016 · doi:10.1137/S036301290036968X
[4] Aubin JP, Bayen AM, Saint-Pierre P (2011) Viability theory: new directions, 2nd edn. Springer, Berlin. doi: 10.1007/978-3-642-16684-6 · Zbl 1238.93001
[5] Azzato JD, Krawczyk JB (2009) InfSOCS012 an updated matlab package for approximating the solution to a continuous-time infinite horizon stochastic optimal control problem with control and state constraints
[6] Béné C, Doyen L, Gabay D (2001) A viability analysis for a bio-economic model. Ecol Econ 36:385–396 · doi:10.1016/S0921-8009(00)00261-5
[7] Bonneuil N (2006) Computing the viability kernel in large state dimension. J Math Anal Appl 323:1444–1454 · Zbl 1111.65059 · doi:10.1016/j.jmaa.2005.11.076
[8] Bonneuil N, Boucekkine R (2008) Sustainability, optimality and viability in the ramsey model, manuscript
[9] Bonneuil N, Saint-Pierre P (2008) Beyond optimality: Managing children, assets, and consumption over the life cycle. J Math Econ 44(3–4):227–241 · Zbl 1133.91344 · doi:10.1016/j.jmateco.2007.04.007
[10] Cardaliaguet P, Quincampoix M, Saint-Pierre P (1999) Set-valued numerical analysis for optimal control and differential games. Ann Int Soc Dyn Games 4:177–247. doi: 10.1007/978-1-4612-1592-9_4 · Zbl 0982.91014
[11] Chapel L, Deffuant G (2007) SVM viability controller active learning: application to bike control. In: The 2007 IEEE symposium on approximate dynamic programming and reinforcement learning (ADPRL 2007). doi: 10.1109/ADPRL.2007.368188
[12] Clément-Pitiot H, Doyen L (1999) Exchange rate dynamics, target zone and viability
[13] Clément-Pitiot H, Saint-Pierre P (2006) Goodwin’s models through viability analysis: some lights for contemporary political economics regulations. In: 12th international conference on computing in economics and finance, Cyprus, conference maker
[14] De Lara M, Doyen L, Guilbaud T, Rochet MJ (2006) Is a management framework based on spawning stock biomass indicators sustainable? A viability approach. ICES J Mar Sci
[15] Deffuant G, Chape L, Martin S (2007) Approximating viability kernels with support vector machines. IEEE Trans Autom Cont 52(2):933–936. doi: 10.1109/tac.2007.895881 · Zbl 1366.93049 · doi:10.1109/TAC.2007.895881
[16] Doyen L, Péreau JC (2012) Sustainable coalitions in the commons. Math Soc Sci 63:57–64. doi: 10.1016/j.mathsocsci.2011.10.006 · Zbl 1237.91172 · doi:10.1016/j.mathsocsci.2011.10.006
[17] Doyen L, Saint-Pierre P (1997) Scale of viability and minimal time of crisis. Set-Valued Anal 5(3):227–246 · Zbl 0899.49003 · doi:10.1023/A:1008610123440
[18] Doyen L, Thébaud O, Béné C, Martinet V, Gourguet S, Bertignac M, Fifas S, Blanchard F (2012) A stochastic viability approach to ecosystem-based fisheries management. Ecol Econ 75:32–42. doi: 10.1016/j.ecolecon.2012.01.005 · doi:10.1016/j.ecolecon.2012.01.005
[19] Frankowska H, Quincampoix M (1990) Vialbility kernels of differential inclusions with constraints: algorithms and applications. Tech. Rep. WP-90-64, International Institute for Applied Systems Analysis
[20] Gaitsgory V, Quincampoix M (2009) Linear programming approach to deterministic infinite horizon optimal control problems with discounting. SIAM J Control Optim 48:2480–2512. doi: 10.1137/070696209 · Zbl 1201.49040 · doi:10.1137/070696209
[21] Herrera G (2005) Stochastic bycatch, informational asymmetry, and discarding. J Environ Econ Manage 49(3):463–483 · Zbl 1122.91361 · doi:10.1016/j.jeem.2004.05.007
[22] Kaviar Homepage (2012) Kaviar homepage. http://www.kaviar.prd.fr/
[23] Krawczyk JB, Pharo A (2013) Viability theory: an applied mathematics tool for achieving dynamic systems’ sustainability. Math Appl 41:97–126. http://wydawnictwa.ptm.org.pl/index.php/matematyka-stosowana/article/view/409 · Zbl 1297.34023
[24] Krawczyk JB, Kim K (2004) A viability theory analysis of a macroeconomic dynamic game. Eleventh international symposium on dynamic games and applications, Tucson
[25] Krawczyk JB, Kim K (2009) ”Satisficing” solutions to a monetary policy problem: a viability theory approach. Macroecon Dyn 13(1):46–80. doi: 10.1017/s1365100508070466 · Zbl 1286.91091 · doi:10.1017/S1365100508070466
[26] Krawczyk JB, Pharo A (2011) Viability kernel approximation, analysis and simulation application–VIKAASA Manual. SEF Working Paper 13/2011, Victoria University of Wellington. http://hdl.handle.net/10063/1878
[27] Krawczyk JB, Serea OS (2011) When can it be not optimal to adopt a new technology? A viability theory solution to a two-stage optimal control problem of new technology adoption. Optim Control Appl Methods. 10.1002/oca.1030 (published online: 8 Dec 2011). http://www.vuw.ac.nz/staff/jacek_krawczyk/somepapers/oca1030.pdf
[28] Krawczyk JB, Sethi R (2007) Satisficing solutions for New Zealand monetary policy. Tech. rep., Reserve Bank of New Zealand, No DP2007/03. http://www.rbnz.govt.nz/research_and_publications/articles/details.aspx?id=3968
[29] Krawczyk JB, Sissons C, Vincent D (2012) Optimal versus satisfactory decision making: a case study of sales with a target. Computat Manage Sci 10:287–012. http://www.vuw.ac.nz/staff/jacek_krawczyk/somepapers/cms2012.pdf published online: February 2012. doi: 10.1007/s10287-012-0141-7 · Zbl 1273.91189
[30] Martinet V, Doyen L (2007) Sustainability of an economy with an exhaustible resource: a viable control approach. Resour Energy Econ 29(1):17–39 · doi:10.1016/j.reseneeco.2006.03.003
[31] Martinet V, Thébaud O, Doyen L (2007) Defining viable recovery paths toward sustainable fisheries. Ecol Econ 64(2):411–422. doi: 10.1016/j.ecolecon.2007.02.036 · doi:10.1016/j.ecolecon.2007.02.036
[32] Martinet V, Thébaud O, Rapaport A (2010) Hare or tortoise? trade-offs in recovering sustainable bioeconomic systems. Environ Model Assess 15(6):503–517. doi: 10.1007/s10666-010-9226-2 · doi:10.1007/s10666-010-9226-2
[33] Pujal D, Saint-Pierre P (2006) Capture basin algorithm for evaluating and managing complex financial instruments. In: 12th international conference on computing in economics and finance, Cyprus, conference maker
[34] Quincampoix M, Saint-Pierre P (1995) An algorithm for viability kernels in hölderian case: approximation by discrete dynamical systems. J Math Syst Estimat Control 5(1):1–13 · Zbl 0831.34016
[35] Quincampoix M, Veliov VM (1998) Viability with a target: theory and applications. Appl Math Eng 47–58
[36] Saint-Pierre P (1994) Approximation of the viability kernel. Appl Math Optim 29:187–209. doi: 10.1007/bf01204182 · Zbl 0790.65081 · doi:10.1007/BF01204182
[37] Schaefer MB (1954) Some aspects of the dynamics of populations. Bull Int Am Trop Tuna Comm 1(2): 26–56. http://www.iattc.org/PDFFiles2/Bulletins/IATTC-Bulletin-Vol-1-No-2.pdf
[38] Simon HA (1955) A behavioral model of rational choice. Q J Econ 69:99–118. doi: 10.2307/1884852 · doi:10.2307/1884852
[39] Sinclair S (2013) Viability analysis of sustainable bycatch fisheries. Victoria University of Wellington School of Economics and Finance, Master’s thesis
[40] Veliov VM (1993) Sufficient conditions for viability under imperfect measurement. Set-Valued Anal 1(3):305–317. doi: 10.1007/bf01027640 · Zbl 0802.49029 · doi:10.1007/BF01027640
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.