×

zbMATH — the first resource for mathematics

Uniform domains. (English) Zbl 0627.30017
The paper contains several characterizations, old and new, for uniform and John domains in the Euclidean space. In addition, local uniformity and null-sets for uniform domains are considered.

MSC:
30C62 Quasiconformal mappings in the complex plane
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F. W. GEHRING, Uniform domains and the ubiquitous quasidisk, Jahresber. Deutsch. Math.-Verein. 89 (1987), 88-103. · Zbl 0615.30016
[2] F. W. GEHRING AND K. HAG, Remarks on uniform and quasiconformalextension domains, Complex Variables, · Zbl 0638.30022
[3] F. W. GEHRING AND O. MARTIO, Quasiextremal distance domains and extension o quasiconformal mappings, J. Analyse Math. 45 (1985), 181-206. 118J. VIISALA · Zbl 0596.30031 · doi:10.1007/BF02792549
[4] F. W. GEHRING AND B. G. OSGOOD, Uniform domains and the quasihyperbolic metric, J. Analyse Math. 36 (1979), 50-74. · Zbl 0449.30012 · doi:10.1007/BF02798768
[5] P. W. JONES, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), 41-66 · Zbl 0432.42017 · doi:10.1512/iumj.1980.29.29005
[6] P. W. JONES, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), 71-88. · Zbl 0489.30017 · doi:10.1007/BF02392869
[7] K. KURATOWSKI, Topology, Vol. II, Academic Press, 1968
[8] G. J. MARTIN, Quasiconformal and bi-Lipschitz homeomorphisms, uniform domains an the quasihyperbolic metric, Trans. Amer. Math. Soc. 292 (1985), 169-191. JSTOR: · Zbl 0584.30020 · doi:10.2307/2000176 · links.jstor.org
[9] O. MARTIO, Definitions for uniform domains, Ann. Acad Sci. Fenn. Ser. A I Math. (1980), 197-205. · Zbl 0469.30017
[10] O. MARTIO AND J. SARVAS, Injectivity theorems in plane and space, Ann. Acad. Sci Fenn. Ser. A I Math. 4 (1979), 383-401. · Zbl 0406.30013
[11] J. VAISA’LA’, On the null-sets for extremal distances, Ann. Acad. Sci. Fenn. Ser. A Math. 322 (1962), 1-12. · Zbl 0119.29503
[12] J. VAISALA, Quasimbius maps, J. Analyse Math. 44 (1985), 218-234 · Zbl 0593.30022 · doi:10.1007/BF02790198
[13] J. VAISALA, Porous sets and quasisymmetric maps, Trans. Amer. Math. Soc. 299 (1987), 525-533. JSTOR: · Zbl 0617.30025 · doi:10.2307/2000511 · links.jstor.org
[14] J. VAISALA, Invariants for quasisymmetric, quasimobius and bilipschitz maps, J. Analys Math., · Zbl 0682.30014 · doi:10.1007/BF02796123
[15] G. T. WHYBURN, Analytic topology, Amer. Math. Soc. Colloquium Publications 28, 1942
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.