Rubio de Francia, José L.; Ruiz, Francisco J.; Torrea, José L Calderón-Zygmund theory for operator-valued kernels. (English) Zbl 0627.42008 Adv. Math. 62, 7-48 (1986). The authors present a new angle of the classical paper of Benedek- Calderón-Panzone on convolution operators on Banach space valued functions; with BMO, UMD, atoms, weights, Littlewood-Paley operators, operators with variable kernels, in the vector-valued setting. From the new results: For every \(\epsilon >0\), there exists \(C_{\epsilon}>0:\) \((T^*f)^{\#}\leq C_{\epsilon}M_{1+\epsilon}f\), \(f\in L_ c^{\infty}\); then \(T^*\) is bounded from \(L_ c^{\infty}\) to BMO. And \[ \int_{R^ n}T^*f(x)^ pw(x)dx\leq C_{p,w}\int_{R^ n}| f(x)|^ pw(x)dx, \] for all \(1<p<\infty\), \(w\in A_ p\). Reviewer: Bui Doan Khanh Cited in 1 ReviewCited in 154 Documents MSC: 42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.) Keywords:convolution operators on Banach space valued functions PDF BibTeX XML Cite \textit{J. L. Rubio de Francia} et al., Adv. Math. 62, 7--48 (1986; Zbl 0627.42008) Full Text: DOI References: [1] Andersen, K. F.; John, R. T., Weighted inequalities for vector-valued maximal functions and singular integrals, Studia Math., 69, 19-31 (1980) · Zbl 0448.42016 [2] Benedek, A.; Calderǒn, A. P.; Panzone, R., Convolution operators on Banach space valued functions, (Proc. Nat. Acad. Sci. USA, 48 (1962)), 356-365 · Zbl 0103.33402 [3] Bourgain, J., Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat., 21, 163-168 (1983) · Zbl 0533.46008 [4] Bourgain, J., Extension of a result of Benedek, Calderón and Panzone, Ark. Mat., 22, 91-95 (1984) · Zbl 0548.46022 [5] Burholder, D. L., A geometric condition that implies the existence of certain singular integrals of Banach-space valued functions, (Proceedings, Conf. Harmonic Analysis in Honor of A. Zygmund (1982), Wadsworth: Wadsworth Belmont, Calif), 270-286 [6] Calderón, C. P., Lacunary spherical means, Illinois J. Math., 23, 476-484 (1979) [7] Carleson, L., On convergence and growth of partial sums of Fourier series, Acta Math., 116, 135-157 (1966) · Zbl 0144.06402 [8] Coifman, R. R.; Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51, 241-250 (1974) · Zbl 0291.44007 [9] Cofman, R. R.; Meyer, Y., Au-delà des opérateurs pseudo-différentiels, Astérisque, 57 (1978) · Zbl 0483.35082 [10] Coifman, R. R.; Weiss, G., Analyse harmonique non commutative sur certains espaces homogènes, (Lecture Notes in Mathematics, Vol. 242 (1971), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0224.43006 [11] Fefferman, C.; Stein, E. M., Some maximal inequalities, Amer. J. Math., 93, 107-115 (1971) · Zbl 0222.26019 [12] Fefferman, C.; Stein, E. M., \(H^p\)-Spaces of several variables, Acta Math., 129, 137-193 (1972) · Zbl 0257.46078 [13] Herz, C.; Rivière, N. M., Estimation for translation invariant operators on spaces with mixed norms, Studia Math., 44, 511-515 (1972) · Zbl 0269.43006 [14] Hunt, R. A., On the convergence of Fourier series, (Proceedings, Conf. Orthogonal Expansions (1968), Southern Illinois Univ. Press: Southern Illinois Univ. Press Carbondale), 235-255 [15] Hunt, R. A.; Young, W.-S, A weighted norm inequality for Fourier series, Bull. Amer. Math. Soc., 80, 274-277 (1974) · Zbl 0283.42004 [16] Journé, J.-L, Calderón-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón, (Lecture Notes in Mathematics, Vol. 994 (1983), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0508.42021 [17] Kurtz, D. S., Littlewood-Paley and multiplier theorems on weighted \(L^p\) spaces, Trans. Amer. Math. Soc., 259, 235-254 (1980) · Zbl 0436.42012 [18] Kurtz, D. S.; Wheeden, R. L., Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc., 255, 343-362 (1979) · Zbl 0427.42004 [19] Rivière, N. M., Singular integrals and multiplier operators, Ark. Mat., 9, 243-278 (1971) · Zbl 0244.42024 [20] de Francia, J. L.Rubio, Vector valued inequalities for operators in \(L^p\) spaces, Bull. London Math. Soc., 12, 211-215 (1980) · Zbl 0417.47010 [21] de Francia, J. L.Rubio, Boundedness of maximal functions and singular integrals in weighted \(L^p\) spaces, (Proc. Amer. Math. Soc., 83 (1981)), 673-679 · Zbl 0477.42011 [22] de Francia, J. L.Rubio, Weighted norm inequalities and vector values inequalities, (Lecture Notes in Mathematics, Vol. 908 (1982), Springer-Verlag: Springer-Verlag Berlin), 86-101 · Zbl 0491.42019 [23] de Francia, J. L.Rubio, Fourier Series and Hilbert Transforms of Functions with Values in UMD Banach Spaces, Inst. Mittag-Leffler, Report No. 16 (1983) · Zbl 0526.42004 [24] de Francia, J. L.Rubio; Ruiz, F. J.; Torrea, J. L., Les opérateurs de Calderón-Zygmund vectoriels, C. R. Acad. Sci. Paris, Sér. I, 297, 477-480 (1983) · Zbl 0581.42009 [25] Ruiz, F. J., Teoría de Calderón-Zygmund para funciones vectoriales y desigualdades con peso, (Thesis (1983), Universidad de Zaragoza) [26] Stein, E. M., On limits of sequences of operators, Ann. of Math., 74, 140-170 (1961) · Zbl 0103.08903 [27] Stein, E. M., Sincular Integrals and Differentiability Properties of Functions (1970), Princeton Univ. Press: Princeton Univ. Press Princeton, N. J [28] Stein, E. M., Maximal functions: Spherical means, (Proc. Nat. Acad. Sci. USA, 73 (1976)), 2174-2175 · Zbl 0332.42018 [29] Stein, E. M.; Wainger, S., Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc., 84, 1239-1295 (1978) · Zbl 0393.42010 [30] Sjölin, P., Convergence almost everywhere of certain singular integrals and multiple Fourier series, Ark. Mat., 9, 65-90 (1971) · Zbl 0212.41703 [31] Stromberg, J.-O, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J., 28, 511-544 (1979) · Zbl 0429.46016 [32] Zo, F., A note approximation of the identity, Studia Math., 55, 111-122 (1976) · Zbl 0326.44005 [33] Zygmund, A., Trigonometric Series, I, II (1968), Cambridge Univ. Press: Cambridge Univ. Press London · Zbl 0628.42001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.