×

Hamilton-Jacobi equations in infinite dimensions. I: Uniqueness of viscosity solutions. (English) Zbl 0627.49013

In a series of previous papers the authors have introduced the concept of viscosity solutions for Hamilton-Jacobi equations in \({\mathbb{R}}^ n\) of the form \(H(x,u,Du)=0\) and proved existence and uniqueness for a large class of Hamiltonian functions H. This is a first work of a series of papers where the authors extend their beautiful theory to infinite dimensional Banach spaces with the Radon-Nikodym property. The main result of this paper is a uniqueness theorem of viscosity solutions under appropriate conditions on H which resemble those from the finite dimensional case. A key ingredient of the uniqueness in the infinite dimensional setting is Stegall’s variational principle.
Reviewer: V.Barbu

MSC:

49L99 Hamilton-Jacobi theories
35D05 Existence of generalized solutions of PDE (MSC2000)
35F20 Nonlinear first-order PDEs
46B99 Normed linear spaces and Banach spaces; Banach lattices
Full Text: DOI

References:

[1] Barbu, V.; Da Prato, G., Hamilton-Jacobi Equations in Hilbert Spaces (1983), Pitman: Pitman London · Zbl 0508.34001
[2] Bourgain, J., La propriété de Radon-Nikodym, (Cours de \(3^e\) cycle polycopié no. 36 (1979), Université P. et M. Curie: Université P. et M. Curie Paris) · Zbl 0423.46011
[3] Crandall, M. G.; Evans, L. C.; Lions, P. L., Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 282, 487-502 (1984) · Zbl 0543.35011
[4] Crandall, M. G.; Lions, P. L., Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277, 1-42 (1983) · Zbl 0599.35024
[5] M. G. Crandall and P. L. LionsNonlinear Anal. T. M. A.; M. G. Crandall and P. L. LionsNonlinear Anal. T. M. A. · Zbl 0603.35016
[6] M. G. Crandall, and P. L. Lions; M. G. Crandall, and P. L. Lions · Zbl 0639.49021
[7] M. G. Crandall and R. NewcombProc. Amer. Math. Soc.; M. G. Crandall and R. NewcombProc. Amer. Math. Soc. · Zbl 0575.35008
[8] Crandall, M. G.; Souganidis, P. E., Developments in the theory of nonlinear first order partial differential equations, (Knowles, W.; Lewis, R. T., Differential Equations, I. Differential Equations, I, North-Holland Mathematics Studies 92 (1984), North-Holland: North-Holland Amsterdam), 131-143 · Zbl 0564.35011
[9] Ekeland, I., Nonconvex minimization problems, Bull. Amer. Math. Soc., 1, 443-474 (1979) · Zbl 0441.49011
[10] Ekeland, I.; Lebourg, G., Generic Fréchet differentiability and perturbed optimization in Banach spaces, Trans. Amer. Math. Soc., 224, 193-216 (1976) · Zbl 0313.46017
[11] Ishii, H., Uniqueness of unbounded solutions of Hamilton-Jacobi equations, Indiana Univ. Math. J., 33, 721-748 (1984) · Zbl 0551.49016
[12] H. Ishii; H. Ishii · Zbl 0614.35011
[13] R. Jensen; R. Jensen
[14] Lions, P. L., Generalized Solutions of Hamilton-Jacobi Equations (1982), Pitman: Pitman London · Zbl 1194.35459
[15] P. E. SouganidisJ. Differential Equations; P. E. SouganidisJ. Differential Equations · Zbl 0506.35020
[16] Stegall, C., Optimization of functions on certain subsets of Banach spaces, Math. Ann., 236, 171-176 (1978) · Zbl 0365.49006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.