zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalized solutions by Cauchy’s method of characteristics. (English) Zbl 0627.49015
The author uses the method of characteristics to build generalized solutions of first-order Hamilton-Jacobi equations under some geometric type restrictions.
Reviewer: P.L.Lions

MSC:
49L20Dynamic programming method (infinite-dimensional problems)
35A30Geometric theory for PDE, characteristics, transformations
35F20General theory of first order nonlinear PDE
WorldCat.org
Full Text: Numdam EuDML
References:
[1] R. Abraham - J. ROBBIN, Transversal Mappings and Flows , Benjamin , New York , 1967 . MR 240836 | Zbl 0171.44404 · Zbl 0171.44404
[2] S.H. Benton jr., The Hamilton-Jacobi equation. A global approach , Academic Press , New York , 1977 . MR 442431 | Zbl 0418.49001 · Zbl 0418.49001
[3] V.G. Boltyanskii , Mathematical Methods of Optimal Control , Holt, Rinehart & Winston , New York , 1971 . MR 353081 | Zbl 0213.15504 · Zbl 0213.15504
[4] P. Brunovsky , Existence of regular synthesis for general control problems , J. Differential Equations , 38 ( 1980 ), pp. 317 - 343 . MR 605053 | Zbl 0417.49030 · Zbl 0417.49030 · doi:10.1016/0022-0396(80)90011-X
[5] L. Cesari , Optimization. Theory and Applications , Springer , New York , 1983 . MR 688142 | Zbl 0506.49001 · Zbl 0506.49001
[6] F.H. Clarke , Optimal control and the true hamiltonian , SIAM Review , 21 ( 1979 ), pp. 157 - 166 . MR 524510 | Zbl 0408.49025 · Zbl 0408.49025 · doi:10.1137/1021027
[7] R. Courant - D. Hilbert , Methods of Mathematical Physics , vol. II , Wiley , New York , 1962 . MR 1013360 | Zbl 0099.29504 · Zbl 0099.29504
[8] M.G. Crandal - L.C. Evans - P.L. Lions , Some properties of viscosity solutions of Hamilton-Jacobi equations , Trans. A.M.S ., 282 , 2 ( 1984 ), pp. 487 - 502 . MR 732102 | Zbl 0543.35011 · Zbl 0543.35011 · doi:10.2307/1999247
[9] R.P. Fedorenko , On the Cauchy problem for Bellman equation of dynamic programming , Z. Vyc. Mat. i Mat. Phys. , 9 ( 1969 ), pp. 426 - 432 (Russian). MR 258448 | Zbl 0224.49020 · Zbl 0224.49020 · doi:10.1016/0041-5553(69)90105-0
[10] W.H. Fleming , The Cauchy problem for a nonlinear first order partial differential equation , J. Differential Equations , 5 ( 1969 ), pp . 515 - 530 . MR 235269 | Zbl 0172.13901 · Zbl 0172.13901 · doi:10.1016/0022-0396(69)90091-6
[11] A. Halanay , Differential Equations , Ed. Did. Pedagogică , Bucuresti , 1972 (Romanian). MR 355142
[12] PH. Hartman , Ordinary Differential Equations , Wiley , New York , 1964 . MR 171038 | Zbl 0125.32102 · Zbl 0125.32102
[13] R. Isaacs , Differential Games , Wiley , New York , 1965 . MR 210469 | Zbl 0125.38001 · Zbl 0125.38001
[14] S. Lang , Introduction to Differentiable Manifolds , Interscience , New York , 1962 . MR 155257 | Zbl 0103.15101 · Zbl 0103.15101
[15] P.L. Lions , Generalized Solutions of Hamilton-Jacobi Equations , Pitman , Boston , 1982 . MR 667669 | Zbl 0497.35001 · Zbl 0497.35001
[16] J. Mather , Stratifications and Mappings , Preprint, Harvard University (Russian transl.: Uspehi Mat. Nauk , 27 ( 1972 ), pp. 85 - 118 ). MR 385917 | Zbl 0253.58005 · Zbl 0253.58005
[17] Ş. Miric , The contingent and the paratingent as generalized derivatives for vector-valued and set-valued mappings , Nonlinear Analysis. Theory, Theory & Appl. , 6 ( 1982 ), pp. 1335 - 1368 . MR 684969 | Zbl 0529.26010 · Zbl 0529.26010 · doi:10.1016/0362-546X(82)90108-0
[18] Ş. Miric , Stratified Hamiltonians and the optimal feedback control , Ann. Mat. Pura Appl. , 33 ( 1983 ), pp. 51 - 78 . MR 725019 | Zbl 0523.49020 · Zbl 0523.49020 · doi:10.1007/BF01766011
[19] Ş. Miric , Stratified Hamilton-Jacobi equations and applications , Anal. Univ. Bucureşti, Seria Mat. , 33 ( 1984 ), pp. 59 - 68 . MR 773733 | Zbl 0546.49009 · Zbl 0546.49009
[20] Ş Mirică , Dynamic programming method for stratified optimal control problems , Preprint Series in Mathematics, No. 12/ 1984 , Increst-Inst. Inst. Mat ., Bucureşti , 1984 .
[21] H. Stalford , Sufficiency theorem for discontinuous optimal cost surfaces , SIAM J. Control Opt. , 16 ( 1978 ), pp. 63 - 82 . MR 487730 | Zbl 0385.49007 · Zbl 0385.49007 · doi:10.1137/0316006
[22] H. Sussman , Analytic stratifications and control theory, Proc. Int. Congress of Math . ( Helsinki , 1978 ), pp. 865 - 871 . MR 562701 | Zbl 0499.93023 · Zbl 0499.93023
[23] M. Tamm , Subanalytic sets in the Calculus of Variations , Acta Math. , 146 ( 1981 ), pp. 167 - 199 . MR 611382 | Zbl 0478.58010 · Zbl 0478.58010 · doi:10.1007/BF02392462
[24] R. Thom , Ensembles et morphismes stratifiés , Bull. Amer. Math. Soc. , 75 ( 1969 ), pp. 24 - 284 . Article | MR 239613 | Zbl 0197.20502 · Zbl 0197.20502 · doi:10.1090/S0002-9904-1969-12138-5 · http://minidml.mathdoc.fr/cgi-bin/location?id=00221039
[25] E. Whitney , Tangents to an analytic variety , Ann. of Math. , 81 ( 1965 ), pp. 496 - 549 . MR 192520 | Zbl 0152.27701 · Zbl 0152.27701 · doi:10.2307/1970400