Wilson, Christopher B. Relativized NC. (English) Zbl 0627.68043 Math. Syst. Theory 20, No. 1, 13-29 (1987). This paper introduces a notion of relativized depth for circuit families and discusses issues regarding uniform families of relativized circuits. This allows us to define a version of relativized NC and compare it under various oracles with relativized L, NL, and P. We see that \(NC_ 1\) is properly contaied in L if and only if there exists an oracle A such that \(NC_ 1^ A\) is properly contained in \(L^ A\). There is an oracle A where the hierarchy collapses, \(NC_ 1^ A=NC^ A\), and another where \(NC_ 1^ A\subset NC^ A_ 2\subset...\subset NC^ A\subset P^ A\). We then construct an A so that, for any k, \(NC^ A_ 1\) contains a set not in \(NSPACE^ A(O(n^ k))\), suggesting that the notion of relativized space is too weak or that of relativized depth is too strong. Cited in 1 ReviewCited in 14 Documents MSC: 68Q25 Analysis of algorithms and problem complexity Keywords:relativized complexity classes; relativized depth for circuit families; uniform families of relativized circuits; relativized NC; oracles × Cite Format Result Cite Review PDF Full Text: DOI References: [1] E. Allender, The complexity of sparse sets inP, Proceedings of the Structure in Complexity Theory Conference, Springer-Verlag, New York, 1986, pp. 1–11. [2] D. Angluin, On relativizing auxiliary pushdown machines,Math. Systems Theory,13 (1980), 283–299. · doi:10.1007/BF01744301 [3] T. Baker, J. Gill, and R. Solovay, Relativizations of theP = ?NP question,SIAM J. Comput.,4 (1975), 431–452. · Zbl 0323.68033 · doi:10.1137/0204037 [4] P. Beame, S. Cook, and J. Hoover, Log depth circuits for division and related problems,Proceedings of the 25th Symposium on Foundations of Computer Science, 1984, pp. 1–6. · Zbl 0797.68074 [5] N. Blum, A Boolean function requiring 3n network size,Theoret. Comput. Sci.,28 (1984), 337–345. · Zbl 0539.94036 · doi:10.1016/0304-3975(83)90029-4 [6] R. V. Book, T. J. Long, and A. Selman, Quantitative relativizations of complexity classes,SIAM J. Comput.,13 (1984), 461–486. · Zbl 0599.03041 · doi:10.1137/0213030 [7] R. V. Book, T. J. Long, and A. Selman, Qualitative relativizations of complexity classes,J. Comput. System Sci.,30 (1985), 395–413. · Zbl 0569.03016 · doi:10.1016/0022-0000(85)90053-4 [8] A. Borodin, On relating time and space to size and depth,SIAM J. Comput.,6 (1977), 733–744. · Zbl 0366.68039 · doi:10.1137/0206054 [9] S. Cook, A taxonomy of problems with fast parallel algorithms,Inform. and Control,64 (1985), 2–22. · Zbl 0575.68045 · doi:10.1016/S0019-9958(85)80041-3 [10] R. Lander and N. Lynch, Relativizations of questions about log-space reducibility,Math. Systems Theory,10 (1976), 19–32. · Zbl 0341.68036 · doi:10.1007/BF01683260 [11] P. Orponen, General nonrelativizability results for parallel models of computation,Proceedings of the Winter School on Theoretical Computer Science, 1984, pp. 194–205. [12] W. Paul, A 2.5n lower bound on the combinatorial complexity of Boolean functions,SIAM J. Comput.,6 (1977), 427–443. · Zbl 0358.68081 · doi:10.1137/0206030 [13] W. Paul, N. Pippenger, E. Szemeredi, and W. Trotter, On nondeterminism versus determinism and related problems,Proceedings of the 24th Symposium on Foundations of Computer Science, 1983, pp. 429–438. [14] N. Pippenger, On simultaneous resource bounds (prelinary version),Proceedings of the 20th Symposium on Foundations of Computer Science, (1979), pp. 307–311. [15] C. W. Rackoff and J. I. Seiferas, Limitations on separating nondeterministic complexity classes,SIAM J. Comput.,10 (1981), 742–745. · Zbl 0468.68052 · doi:10.1137/0210057 [16] W. L. Ruzzo, On uniform circuit complexity,J. Comput. System Sci.,22 (1981), 365–383. · Zbl 0462.68013 · doi:10.1016/0022-0000(81)90038-6 [17] W. L. Ruzzo, J. Simon, and M. Tompa, Space-bounded hierarchies and probabilistic computations,J. Comput. System Sci.,28 (1984), 216–230. · Zbl 0573.68021 · doi:10.1016/0022-0000(84)90066-7 [18] W. Savitch, Relationships between nondeterministic and deterministic tape complexities,J. Comput. System Sci.,4 (1970), 177–192. · Zbl 0188.33502 · doi:10.1016/S0022-0000(70)80006-X [19] C. P. Schnorr, The network complexity and the Turing machine complexity of finite functions,Acta Inform.,7 (1976), 95–107. · Zbl 0338.02019 · doi:10.1007/BF00265223 [20] I. Simon, On some subrecursive reducibilities, Ph.D. dissertation, Stanford University, 1977. [21] L. Stockmeyer, The polynomial time hierarchy,Theoret. Comput. Sci.,3 (1977), 1–22. · Zbl 0353.02024 · doi:10.1016/0304-3975(76)90061-X [22] C. Wilson, Relativized circuit size and depth, Technical Report # 179/85, Department of Computer Science, University of Toronto, 1985. [23] C. Wilson, Relativized circuit complexity,J. Comput. System Sci.,31 (1985), 169–181. · Zbl 0583.68023 · doi:10.1016/0022-0000(85)90040-6 [24] A. Yao, Separating the polynomial-time hierarchy by oracles,Proceedings of the 26th Symposium on Foundations of Computer Science, 1985, pp. 1–10. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.