×

Signorini’s problem with friction in linear elasticity. (English) Zbl 0627.73098

Author treats the following problem: A linear elastic body with pescribed displacements on a part of its surface and given forces at another part is in contact with a rigid support where friction is present. The existence of the solution for the displacement field u had already been studied by J. Nečas, J. Jarušek, J. Haslinger [e.g. Boll. Unione Mat. Ital., V. Ser., B 17, 796-811 (1980; Zbl 0445.49011)]. Their results are modified in this paper where the continuity of the solutions is investigated additionally. The problem is characterized by means of a variational inequality due to G. Duvaut [Actes Congr. internat. Math. 1970, 3, 71-77 (1971; Zbl 0281.73005)]. Author contributes essentially to the mathematical theory of frictional contact.
Reviewer: H.Bufler

MSC:

74A55 Theories of friction (tribology)
74M15 Contact in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
35B99 Qualitative properties of solutions to partial differential equations
35J50 Variational methods for elliptic systems
49J40 Variational inequalities
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. Duvaut, Problème unilateraux en méchanique des milieux continus. International Congress of Mathematicians, Nice, 1970.
[2] G. Duvaut and J. L. Lions, Les Inéquations en Méchanique et en Physique (English translation). Springer, Berlin-Heidelberg-New York, 1976.
[3] G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambique condizioni al contorno. Atti Accad. Naz. Lincei,8 (1963–1964), 91–140. · Zbl 0146.21204
[4] G. Fichera, Boundary value problems of elasticity with unilateral constrains. Handbuch der Physik VI a/2, Springer, Berlin-Heidelberg-New York, 1972.
[5] J. Jarušek, Contact problems with bounded friction. Coercive case. Czechoslovak Math. J.,33 (1983), 237–261.
[6] J. Jarušek, Contact problems with bounded friction. Semicoercive case. Czechoslovak Math. J.,34 (1984), 619–629. · Zbl 0567.73114
[7] D. Kinderlehrer, Remarks about Signorini’s problem in linear elasticity. Ann. Scoula Norm. Sup. Pisa,8 (1981), 605–645. · Zbl 0482.73017
[8] D. Kinderlehrer, Estimates for the solution and its stability in Signorini’s problem. Appl. Math. Optim.,8 (1982), 159–188. · Zbl 0487.73126 · doi:10.1007/BF01447756
[9] P. D. Lax and R. S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators. Comm. Pure Appl. Math.,13 (1960), 427–455. · Zbl 0094.07502 · doi:10.1002/cpa.3160130307
[10] J. L. Lions, Quelque Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod/Gauthier-Villars, Paris, 1969.
[11] J. L. Lions and E. Magenes, Problèmes aux Limites Non Homogènes et Applications I. Dunod, Paris, 1968.
[12] C. B. Morrey Jr., Multiple Integrals in the Calculus of Variations. Springer, New York, 1966. · Zbl 0142.38701
[13] J. Nečas, J. Jarušek and J. Haslinger, On the solution of the variational inequality to the Signorini problem with small friction. Boll. Un. Mat. Ital. (5),17-B (1980), 796–811.
[14] G. Stampacchia, Le problème de Dirichlet pour équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble),15 (1965), 189–258. · Zbl 0151.15401 · doi:10.5802/aif.204
[15] K. O. Widman, Hölder continuity of elliptic systems. Manuscripta Math.,5 (1971), 299–308. · Zbl 0223.35044 · doi:10.1007/BF01367766
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.