New constants in the superintuitionistic logic L2. (English. Russian original) Zbl 1331.03027

Math. Notes 94, No. 6, 938-950 (2013); translation from Mat. Zametki 94, No. 6, 918-932 (2013).
The paper studies the logic L2 (the intermediate logic of the frames of depth at most 2, also known as \(\mathrm{BD}_2\)) endowed with a finite number of new (logical) constants. The obtained results are generalizations of the results from [A. D. Yashin, Algebra Logic 50, No. 2, 171–186 (2011; Zbl 1271.03043); translation from Algebra Logika 50, No. 2, 246–267 (2011)], where the logic L2 with a single additional constant had been researched. In particular, the description of all Novikov-complete extensions (i.e., maximal conservative extensions of L2) is given, as well as decidability of all these extensions is established. The problem of deciding by an additional axiom \(A(\overline{\phi})\) (in the extended language) whether the extension \(\mathrm{L2} + A(\overline{\phi})\) is conservative is also proven to be decidable.
A \(\overline{\phi}\)-logic \(\mathcal{L}\) does not admit any explicit relations if \(\mathcal{L}\) is conservative over \(L\) and, for every additional constant \(\phi_i\) from \(\mathcal{L}\) and every explicit relation \(\phi_i \leftrightarrow B\), the \(\overline{\phi}\)-logic \(\mathcal{L} + \phi_i \leftrightarrow B\) is not conservative over \(L\). A straightforward method of finding whether or not a given complete logic admits new constants has been introduced.


03B55 Intermediate logics


Zbl 1271.03043
Full Text: DOI


[1] Д. П. Скворцов, “Об интуиционистском исчислении высказываний с дополнительной логической связкой”, Исследования по неклассическим логикам и формальным системам, Наука, М., 1983, 154 – 173
[2] Я. С. Сметанич, “О полноте исчисления высказываний с дополнительной операцией от одной переменной”, Тр. ММО, 9, ГИФМЛ, М., 1960, 357 – 371
[3] Я. С. Сметанич, “Об исчислениях высказываний с дополнительной операцией”, Докл. АН СССР, 139:2 (1961), 309 – 312
[4] А. Д. Яшин, “О новой константе в интуиционистской логике высказываний”, Фундамент. и прикл. матем., 5:3 (1999), 903 – 926
[5] А. Д. Яшин, “Континуальность семейства полных по Новикову логик с новой одноместной связкой”, Вестник Моск. ун-та. Сер. 1. Матем., мех., 1997, \? 3, 22 – 25
[6] Л. Л. Максимова, “Предтабличные суперинтуиционистские логики”, Алгебра и логика, 11:5 (1972), 558 – 570
[7] A. Chagrov, M. Zakharyaschev, Modal Logic, Oxford Logic Guides, 35, Clarendon Press, New York, 1997 · Zbl 0871.03007
[8] А. Д. Яшин, “О новых константах в двух предтабличных суперинтуиционистских логиках”, Алгебра и логика, 50:2 (2011), 246 – 267
[9] Л. Л. Эсакиа, Алгебры Гейтинга. I. Теория двойственности, Мецниереба, Тбилиси, 1985
[10] D. P. Dubhashi, “On decidable varieties of Heyting algebras”, J. Symbolic Logic, 57:3 (1992), 988 – 991 · Zbl 0786.03007
[11] Е. Расe\"ва, Р. Сикорский, Математика метаматематики, Математическая логика и основания математики, Наука, М., 1972
[12] N. Bezhanishvili, D. de Jongh, Intuitionistic Logic,
[13] R. I. Goldblatt, “Metamathematics of modal logic. I”, Rep. Math. Logic, 6 (1976), 41 – 77 · Zbl 0356.02016
[14] “Metamathematics of modal logic. II”, Rep. Math. Logic, 7 (1976), 41 – 78, 21 – 52 · Zbl 0356.02017
[15] Р. Ш. Григолия, “Свободные S4.3-алгебры с конечным числом образующих”, Исследования по неклассическим логикам и формальным системам, Наука, М., 1983, 281 – 287
[16] A. Yashin, “New intuitionistic logical constants and Novikov completeness”, Studia Logica, 63:2 (1997), 151 – 180 · Zbl 0945.03010
[17] A. D. Yashin, “New intuitionistic logical constants: undecidability of the conservativeness problem”, Computer Science Logic, Lecture Notes in Comput. Sci., 1258, Springer-Verlag, Berlin, 1997, 460 – 471 · Zbl 0881.03007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.