zbMATH — the first resource for mathematics

Rings of differential operators on invariant rings of tori. (English) Zbl 0628.13019
Let k be an algebraically closed field with \(char(k)=0\) and G a torus acting diagonally on \(k^ S\). For a subset \(\beta\) of \(\bar S=\{1,2,...,s\}\), set \(U_{\beta}=\{u\in k^ S| \quad u_ j\neq 0\;if\;j\in \beta \}.\) Then G acts on the ring \(O_{\beta}\) of regular functions on \(U_{\beta}\), and the author studies the ring \({\mathcal D}(O^ G_{\beta})\) of all differential operators on the invariant ring. More generally, suppose that \(\Delta\) is a set of subsets of \(\bar S,\) such that each invariant ring \(O^ G_{\beta}\) (\(\beta\in \Delta)\) has the same quotient field. Then \(\cap_{\beta \in \Delta}D(O^ G_{\beta})\quad is\) Noetherian and finitely generated as an R-algebra. Now G acts on each \(D(O_{\beta})\) and there is a natural map \(\theta\) :\(\cap_{\beta \in \Delta}D(O_{\beta})^ G\to \cap_{\beta \in \Delta}D(O^ G_{\beta})=D(Y_{\Delta}/G)\quad obtained\) by restriction of the differential operators. The author finds necessary and sufficient conditions for \(\theta\) to be surjective and describes the kernel of \(\theta\). The algebras \(\cap_{\beta \in \Delta}D(O_{\beta})^ G\quad and\cap_{\beta \in \Delta}D(O^ G_{\Gamma})\quad carry\) a natural filtration given by the order of the differential operators. The author shows that the associated graded rings are finitely generated commutative algebras and determines the centers of \(\cap_{\beta \in \Delta}D(O_{\beta})^ G\quad and\cap_{\beta \in \Delta}D(O^ G_{\beta})\).
Reviewer: S.V.Mihovski

13N05 Modules of differentials
14L24 Geometric invariant theory
16W20 Automorphisms and endomorphisms
13B10 Morphisms of commutative rings
Full Text: DOI
[1] Walter Borho and Jean-Luc Brylinski, Differential operators on homogeneous spaces. I. Irreducibility of the associated variety for annihilators of induced modules, Invent. Math. 69 (1982), no. 3, 437 – 476. · Zbl 0504.22015 · doi:10.1007/BF01389364 · doi.org
[2] Arne Brøndsted, An introduction to convex polytopes, Graduate Texts in Mathematics, vol. 90, Springer-Verlag, New York-Berlin, 1983. · Zbl 0509.52001
[3] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318 – 337. · Zbl 0233.14010 · doi:10.2307/1970791 · doi.org
[4] James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 21. · Zbl 0325.20039
[5] Jean-Michel Kantor, Formes et opérateurs différentiels sur les espaces analytiques complexes, Bull. Soc. Math. France Mém. 53 (1977), 5 – 80 (French). · Zbl 0376.32001
[6] Irving Kaplansky, Commutative rings, Revised edition, The University of Chicago Press, Chicago, Ill.-London, 1974. · Zbl 0296.13001
[7] G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. · Zbl 0271.14017
[8] Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Revised edition, Graduate Studies in Mathematics, vol. 22, American Mathematical Society, Providence, RI, 2000. · Zbl 0957.16001
[9] Thierry Levasseur, Anneaux d’opérateurs différentiels, Lecture Notes in Math., vol. 867, Springer, Berlin-New York, 1981, pp. 157 – 173 (French). · Zbl 0507.14012
[10] Thierry Levasseur, Complexe bidualisant en algèbre non commutative, Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin, 36ème année (Paris, 1983 – 1984) Lecture Notes in Math., vol. 1146, Springer, Berlin, 1985, pp. 270 – 287 (French). · Zbl 0594.13015 · doi:10.1007/BFb0074541 · doi.org
[11] Ian M. Musson, Actions of tori on Weyl algebras, Comm. Algebra 16 (1988), no. 1, 139 – 148. · Zbl 0642.16003 · doi:10.1080/00927878808823565 · doi.org
[12] Richard P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57 – 83. · Zbl 0384.13012 · doi:10.1016/0001-8708(78)90045-2 · doi.org
[13] Jean-Pierre Vigué, Opérateurs différentiels sur les espaces analytiques, Invent. Math. 20 (1973), 313 – 336 (French). · Zbl 0248.32008 · doi:10.1007/BF01391327 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.