×

Algebraic cycles and values of L-functions. II. (English) Zbl 0628.14006

[For part I see J. Reine Angew. Math. 350, 94-108 (1984; Zbl 0527.14008).]
In this article, the author refines and illustrates conjectures made by A. A. Beilinson [J. Sov. Math. 30, 2036-2070 (1985); translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Math. 24, 181-238 (1984; Zbl 0588.14013)] and himself [see part I cited above].
For X a smooth projective variety over a number field k, the author considers the “coniveau filtration” F on \(H^.(X_{\bar k},{\mathbb{Q}}_{\ell})\) defined by \[ F^ iH^.(X_{\bar k},{\mathbb{Q}}_{\ell})= \lim Ker(H^.(X_{\bar k},{\mathbb{Q}}_{\ell})\to H^.(X_{\bar k}-y,{\mathbb{Q}}_{\ell})), \] where Y runs over the closed subschemes of \(X_{\bar k}\) of codimension i.
He conjectures that the L-functions associated to the \(\ell\)-adic representations \(gr^ i_ F H^ j\) of Gal\((\bar k/k)\) are independent of \(\ell\). He also considers a certain filtration F on the Chow groups of X and conjectures that the rank of \(gr^ i_ F CH^ r(X)\) is equal to the order of vanishing of \(L(gr^ i_ F H^{2r-1},s)\) at \(s=r\). A connection is suggested between \(gr^ i_ F H^{2r-1}(X_{\bar k},{\mathbb{Q}}_{\ell}(r))\) and the Tate module of the torsion part of \(gr^ iCH^ r(X)\) and a generalization of a formula of Birch and Swinnerton-Dyer becomes meaningful. Moreover there are cycle maps from \(gr^ i_ F CH^ r(X)_{{\mathbb{Q}}}\) to \(H^ 1(\bar k/k, gr^ i_ F H^{2r-1}(X_{\bar k},{\mathbb{Q}}_{\ell}(r))\). - A result of R. Y. Yager [Ann. Math., II. Ser. 115, 411-449 (1982; Zbl 0496.12010)] fits into this framework.
The author finally discusses an example studied by B. Schoen in his thesis [“Algebraic cycles on desingularized nodal hypersurfaces” (Univ. Chicago 1982)] a quintic hypersurface in \(P^ 4\) with 125 double points. The conjectures imply that the Griffiths group of codimension two cycles on this variety should be of rank 0 over \({\mathbb{Q}}\) but of rank 1 over \({\mathbb{Q}}(\sqrt{5})\). An explicit cycle is exhibited which should be of infinite order.
Reviewer: J.H.M.Steenbrink

MSC:

14C15 (Equivariant) Chow groups and rings; motives
14C05 Parametrization (Chow and Hilbert schemes)
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
Full Text: DOI

References:

[1] A. Beilinson, Higher regulations and values of \(L\)-functions , · Zbl 0588.14013
[2] A. Beilinson, Notes in absolute Hodge cohomology , · Zbl 0621.14011
[3] S. Bloch, Algebraic cycles and values of \(L\)-functions , Crelle, · Zbl 0628.14006 · doi:10.1215/S0012-7094-85-05219-6
[4] S. Bloch, Height pairings for algebraic cycles , · Zbl 0577.14004 · doi:10.1016/0022-4049(84)90032-X
[5] S. Bloch and A. Ogus, Gersten’s conjecture and the homology of schemes , Ann. Sci. École Norm. Sup. (4) 7 (1974), 181-201 (1975). · Zbl 0307.14008
[6] H. Clemens, Homological equivalence, modulo algebraic equivalence, is not finitely generated , · Zbl 0529.14002 · doi:10.1007/BF02953771
[7] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer , Invent. Math. 39 (1977), no. 3, 223-251. · Zbl 0359.14009 · doi:10.1007/BF01402975
[8] P. Deligne, Cohomologie étale , Springer Lecture Notes, vol. 569, Springer-Verlag, Berlin, 1977, SGA 4\(1\over 2\). · Zbl 0345.00010
[9] A. Grothendieck, Groupes de monodromie en géométrie algébrique. I , Springer Lecture Notes, vol. 288, Springer-Verlag, Berlin, 1972, SGA 7 I. · Zbl 0237.00013
[10] W. Fulton, Rational equivalence on singular varieties , Inst. Hautes Études Sci. Publ. Math. (1975), no. 45, 147-167. · Zbl 0332.14002 · doi:10.1007/BF02684300
[11] W. Fulton and R. MacPherson, Intersecting cycles on an algebraic variety , Aarhus University, preprint, 1976-77, No. 14. · Zbl 0385.14002
[12] R. Greenberg, On the Birch and Swinnerton-Dyer conjecture , Invent. Math. 72 (1983), no. 2, 241-265. · Zbl 0546.14015 · doi:10.1007/BF01389322
[13] N. Katz, \(p\)-adic interpolation of real analytic Eisenstein series , Ann. of Math. (2) 104 (1976), no. 3, 459-571. JSTOR: · Zbl 0354.14007 · doi:10.2307/1970966
[14] A. S. Merkurev and A. A. Suslin, \(K\)-cohomology of Severi-Brauer varieties and the norm residue homomorphism , Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 1011-1046, 1135-1136, (in Russian). · Zbl 0525.18008 · doi:10.1070/IM1983v021n02ABEH001793
[15] G. Horrocks and D. Mumford, A rank \(2\) vector bundle on \(\mathbf P^4\) with \(15,000\) symmetries , Topology 12 (1973), 63-81. · Zbl 0255.14017 · doi:10.1016/0040-9383(73)90022-0
[16] C. Schoen, Algebraic cycles on desingularized nodal hypersurfaces , Thesis, U. Chicago, June, 1982. · Zbl 0533.14002
[17] C. Soulé, Groupes de Chow et \(K\)-theorie de variétés sur un corps fini , · Zbl 0573.14001 · doi:10.1007/BF01457062
[18] J. Tate, Relations between \(K_2\) and Galois cohomology , Invent. Math. 36 (1976), 257-274. · Zbl 0359.12011 · doi:10.1007/BF01390012
[19] J. Tate, Algebraic cycles and poles of zeta functions , Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) ed. O. F. G. Schilling, Harper & Row, New York, 1965, pp. 93-110. · Zbl 0213.22804
[20] R. Yager, On two variable \(p\)-adic \(L\)-functions , Ann. of Math. (2) 115 (1982), no. 2, 411-449. JSTOR: · Zbl 0496.12010 · doi:10.2307/1971398
[21] N. Katz, Groupes de monodromie en géométrie algébrique. II , Springer Lecture Notes, vol. 340, Springer-Verlag, Berlin, 1973, Exposé XVIII in SGA 7 II. · Zbl 0258.00005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.