Ancochea-Bermudez, José Maria; Goze, Michel Classification of filiform Lie algebras in dimension 8. (Classification des algèbres de Lie filiformes de dimension 8.) (French) Zbl 0628.17005 Arch. Math. 50, No. 6, 511-525 (1988). We give the classification of complex nilpotent filiform Lie algebras in dimension 8. Recall that an \(n\)-dimensional nilpotent Lie algebra \(\mathfrak g\) is filiform if there is a vector \(X\) in \(\mathfrak g\) and a basis \((X,X_ 2,\ldots,X_ n)\) such that \((\text{ad}\, X)(X_ i)=X_{i-1}\), \(i=3,\ldots,n\). We prove that we have a filiform 8-dimensional Lie algebra whose orbit is open in the manifold of the 8-dimensional nilpotent Lie algebra structure. Reviewer: José Maria Ancochea-Bermudez Cited in 4 ReviewsCited in 25 Documents MSC: 17B30 Solvable, nilpotent (super)algebras 17B05 Structure theory for Lie algebras and superalgebras Keywords:classification; complex nilpotent filiform Lie algebras in dimension 8 PDF BibTeX XML Cite \textit{J. M. Ancochea-Bermudez} and \textit{M. Goze}, Arch. Math. 50, No. 6, 511--525 (1988; Zbl 0628.17005) Full Text: DOI Online Encyclopedia of Integer Sequences: Number of isomorphism classes of complex filiform Lie algebras of dimension n. References: [1] J. M. Ancochéa-Bermudez etM. Goze, Sur la classification des algèbres de Lie nilpotentes de dimension 7. C.R.A.S. Paris t 302. I.17, 611-613 (1986). · Zbl 0591.17008 [2] A.Cerezo, Les algèbres de Lie nilpotentes réelles et complexes de dimension 6. Publi. Univ. Nice27 (1983). [3] J. Dixmier, Sur les représentations unitaires des groupes de Lie nilpotents. Bull. Soc. Math. France85, 325-388 (1957). · Zbl 0085.10303 [4] M. Goze etJ. M. Ancochéa-Bermudez, Classification des algèbres de Lie nilpotentes de dimension7. I.R.M.A. Strasbourg 1985. [5] M.Goze, Thèse Mulhouse 1982. [6] L.Magnin, Sur les algèbres de Lie nilpotentes de dimension ?7. J. Geom. and Physics 1986. · Zbl 0594.17006 [7] V. V.Morozov, Classification des algèbres de Lie nilpotentes de dimension6. Isv Vyss. Ucebn. Zaved., Math. A190 (1958). [8] M.Vergne, Sur la variété des lois nilpotentes. Thèse 3è cycle Paris, 1966. [9] G.Vranceanu, Leçons de géométrie différentielle. 4. Edition de l’académie roumaine 1975. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.