×

zbMATH — the first resource for mathematics

Hypergroups and hypergroup algebras. (English. Russian original) Zbl 0628.43009
J. Sov. Math. 38, 1734-1761 (1987); translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. 26, 57-106 (1985).
This paper is a survey of the subject of hypergroup theory (or alternatively, of the theory of generalized translation operators). A very general form of the theory is concerned with the following situation. Let \(\Phi\) be a space of functions on a set H. Suppose that for each x in H a linear operator \(R^ x\) (called right translation by x) is given on \(\Phi\). For \(y\in H\) define left translation \(L^ y\) by y using the formula \(L^ y \phi (x)=R^ x \phi (y)\). Then we have a hypergroup if \(L^ y\) maps \(\Phi\) into itself for each y, each \(L^ y\) commutes with each \(R^ x\), and there is e in H for which \(R^ e\) is the identity.
With this structure, to any pair y, x of points of H can be assigned as ‘generalized product’ the linear functional \(\phi \mapsto R^ x \phi (y)\) on \(\Phi\) ; in the case in which H is a locally compact space and \(\Phi\) is C(H) this will often mean assigning a measure as the product of two points of H. (An alternative approach to the definition can be obtained by this route.) In the latter case the space of measures of compact support on H receives a natural multiplication known as generalized convolution. In a similar way, if H is a \(C^{\infty}\)- manifold, a hypergroup structure provides a convolution for distributions on H. Hypergroups of particular interest arise if the product of any two elements of H is a probability measure or if there is an ‘involution’ on H (to play part of the role of inverses in a group).
Being very general, hypergroups embrace a wide range of particular examples. Obviously familiar convolution algebras of measures are included. Any finite hypercomplex system (i.e. finite-dimensional associative algebra) can be viewed as a hypergroup, as can a hypercomplex system with a continuous basis. The double coset space of a locally compact group with respect to a compact subgroup has a natural hypergroup structure. Certain differential operators generate translation operators and thence hypergroups.
The theory of hypergroups aims at generalizing much of harmonic analysis. This survey considers Lie theory, Laplace and Fourier transforms, spectral synthesis, representation theory, Plancherel’s theorem and other topics. There is a list of 183 references (about half from the Russian literature) dated up to 1985.
Reviewer: J.S.Pym

MSC:
43A99 Abstract harmonic analysis
58B25 Group structures and generalizations on infinite-dimensional manifolds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Yu. M. Berezanskii, ?Center of the group ring of a compact group,? Dokl. Akad. Nauk SSSR,72, No. 5, 825?828 (1950).
[2] Yu. M. Berezanskii, ?Normed rings constructed from orthogonal polynomials,? Ukr. Mat. Zh.,3, No. 4, 412?432 (1951).
[3] Yu. M. Berezanskii and A. A. Kalyuzhnyi, ?Hypercomplex systems with locally compact bases,? Inst. Mat. Akad. Nauk Ukr. SSR, Preprint, No. 40 (1982).
[4] Yu. M. Berezanskii and A. A. Kalyuzhnyi, ?Nuclear spaces of functions on the basis of a hypercomplex system,? Ukr. Mat. Zh.,35, No. 1, 9?17 (1983). · Zbl 0533.46012 · doi:10.1007/BF01093154
[5] Yu. M. Berezanskii and A. A. Kalyuzhnyi, ?Spectral decompositions of representations of hypercomplex systems,? in: Spectral Theory of Operators and Infinite-Dimensional Analysis [in Russian], Inst. Mat. Akad. Nauk Ukr. SSR, Kiev (1984), pp. 4?19.
[6] Yu. M. Berezanskii and S. G. Krein, ?Continuous algebra,? Dokl. Akad. Nauk SSSR,72, No. 1, 5?8 (1950).
[7] Yu. M. Berezanskii and S. G. Krein, ?Hypercomplex systems with continuous basis,? Usp. Mat. Nauk,12, No. 1, 147?152 (1957).
[8] Yu. M. Berezanskii and S. G. Krein, ?Hypercomplex systems with compact basis,? Ukr. Mat. Zh.,3, No. 2, 184?202 (1951).
[9] F. A. Berezin, Introduction to Algebra and Analysis with Anticommuting Variables [in Russian], Moscow State Univ. (1983). · Zbl 0527.15020
[10] F. A. Berezin and I. M. Gel’fand, ?Theory of spherical functions on symmetric Riemannian manifolds,? Tr. Mosk. Mat. Ob-va,5, 312?351 (1956).
[11] F. A. Berezin and G. I. Kats, ?Lie groups with commuting and anticommuting parameters,? Mat. Sb.,82, No. 3, 343?359 (1970).
[12] V. M. Bukhshtaber, ?Characteristic classes in cobordisms and topological applications of the theory of one-valued and two-valued formal groups,? J. Sov. Math.,11, No. 6 (1979). · Zbl 0428.55002
[13] V. M. Bukhshtaber and A. N. Kholodov, ?Topological constructions connected with multivalued formal groups,? Izv. Akad. Nauk SSSR, Ser. Mat.,46, No. 1, 3?27 (1982). · Zbl 0501.55003
[14] L. I. Vainerman, ?Harmonic analysis on hypercomplex systems with compact and discrete basis,? in: Spectral Theory of Operators and Infinite-Dimensional Analysis [in Russian], Inst. Mat. Akad. Nauk Ukr. SSR, Kiev (1984), pp. 19?32.
[15] L. I. Vainerman, ?Duality principle for finite hypercomplex systems,? Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 2, 12?21 (1985).
[16] L. I. Vainerman and G. I. Kats, ?Nonunimodular ringed groups and Hopf-von Neumann algebras,? Mat. Sb.,94, No. 2, 194?225 (1974).
[17] L. I. Vainerman and G. L. Litvinov, ?Plancherel’s formula and the inversion formula for generalized translation operators,? Dokl. Akad. Nauk SSSR,257, No. 4, 792?795 (1981).
[18] A. M. Vershik, ?Geometric theory of states, von Neumann boundary, duality of C*-algebras,? J. Sov. Math.,3, No. 6 (1975).
[19] A. M. Vershik, ?Algebras with quadratic relations,? in: Spectral Theory of Operators and Infinite-Dimensional Analysis [in Russian], Inst. Mat. Akad. Nauk Ukr. SSR, Kiev (1984), pp. 32?57.
[20] V. É. Vol’kovich, ?Analytic description of K. Urbanik algebras,? Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk,5, 12?17 (1979).
[21] V. É. Vol’kovich, ?Normed rings generated by K. Urbanik algebras,? Teor. Veroyatn. Primen.,25, No. 2, 432?433 (1980).
[22] V. É. Vol’kovich, ?Normed rings generated by generalized convolutions,? in: Problems of Stability of Stochastic Models. Proceedings of a Seminar [in Russian], VNIISI, Moscow (1980), pp. 12?18.
[23] I. M. Gel’fand, ?Spherical functions on symmetric Riemannian spaces,? Dokl. Akad. Nauk SSSR,70, No. 1, 5?8 (1950).
[24] R. Ya. Grabovskaya, V. I. Kononenko, and V. B. Osipov, ?A family of generalized translation operators,? Izv. Akad. Nauk SSSR, Ser. Mat.,41, No. 4, 912?936 (1977).
[25] R. Ya. Grabovskaya and S. G. Krein, ?A representation of the algebra of differential operators and differential equations connected with it,? Dokl. Akad. Nauk SSSR,212, No. 2, 280?284 (1973).
[26] D. I. Gurevich, ?Counterexamples to a problem of L. Schwartz,? Funkts. Anal. Prilozhen.,9, No. 2, 29?35 (1975). · Zbl 0326.46020
[27] D. I. Gurevich, ?Generalized translation operators with right infinitesimal Sturm-Liouville operator,? Mat. Zametki,25, No. 3, 393?408 (1979). · Zbl 0452.47058
[28] D. I. Gurevich, ?Generalized translation operators on Lie groups,? Izv. Akad. Nauk ArmSSR,18, No. 4, 305?317 (1983).
[29] D. I. Gurevich, ?Multivalued Lie groups,? Usp. Mat. Nauk,39, No. 6, 195?196 (1984).
[30] D. I. Gurevich, ?Yang-Baxter equations and a generalization of formal Lie theory,? Dokl. Akad. Nauk SSSR (1986) (in press). · Zbl 0627.17006
[31] J. Dixmier, C*-Algebras and Their Representations [Russian translation], Nauka, Moscow (1974).
[32] D. P. Zhelobenko, Harmonic Analysis on Semisimple Complex Lie Groups [in Russian], Nauka, Moscow (1974).
[33] D. P. Zhelobenko, ?S-algebras and Verma modules over reductive Lie algebras,? Dokl. Akad. Nauk SSSR,273, No. 4, 785?788 (1983). · Zbl 0568.17005
[34] D. P. Zhelobenko, ?Z-algebras over reductive Lie algebras,? Dokl. Akad. Nauk SSSR,273, No. 6, 1301?1304 (1983). · Zbl 0568.17006
[35] A. A. Kalyuzhnyi, ?Existence of a multiplicative measure,? Ukr. Mat. Zh.,35, No. 3, 369?371 (1983).
[36] M. V. Karsev, ?Operators of regular representation for a class of non-Lie commuting relations,? Funkts. Anal. Prilozhen.,13, No. 3, 89?90 (1979).
[37] M. V. Karasev and V. P. Maslov, ?Algebras with general commuting relations and their applications. II. Operator unitarily nonlinear equations,? J. Sov. Math.,15, No. 3 (1981).
[38] G. I. Kats, ?Ringed groups and duality principles. I, II,? Tr. Mosk. Mat. O-va,12, 259?301 (1963);13, 84?113 (1965).
[39] S. V. Kerov, ?Duality of finite-dimensional C*-algebras,? Vestn. Leningr. Univ., No. 7, 23?29 (1974). · Zbl 0291.46041
[40] A. A. Kirillov, Elements of Representation Theory [in Russian], Nauka, Moscow (1972).
[41] I. F. Krasichkov, ?Closed ideals in locally convex algebras of entire functions. I, II,? Izv. Akad. Nauk SSSR, Ser. Mat.,31, 37?60 (1967);32, 1024?1032 (1968).
[42] I. F. Krasichkov, ?Closed ideals in locally convex algebras of entire functions. Algebra of minimal type,? Sib. Mat. Zh.,9, No. 1, 77?96 (1968). · Zbl 0161.10804 · doi:10.1007/BF02196656
[43] S. G. Krein and M. I. Khazan, ?Differential equations in Banach spaces,? J. Sov. Math.,30, No. 3 (1985). · Zbl 0611.34059
[44] P. A. Kuchment, ?Representations of solutions of invariant differential equations on certain symmetric spaces,? Dokl. Akad. Nauk SSSR,259. No. 3, 532?535 (1981). · Zbl 0497.58025
[45] P. A. Kuchment, ?Functions, periodic in the mean on symmetric spaces,? Funkts. Anal. Prilozhen.,16, No. 3, 68?69 (1982).
[46] P. A. Kuchment, ?Spectral synthesis in spaces of solutions of differential equations, invariant with respect to transformation groups,? in: Application of Topology to Contemporary Analysis [in Russian], Voronezh State Univ. (1985), pp. 87?105.
[47] B. M. Levitan, ?Normed rings generated by generalized translation operators,? Dokl. Akad. Nau kSSSR,47, No. 1, 3?6 (1945).
[48] B. M. Levitan, ?Theorem on the representation of positive definite functions for a generalized translation operation,? Dokl. Akad. Nauk SSSR,47, No. 3, 163?165 (1945).
[49] B. M. Levitan, ?Plancherel theorem for generalized translation operation,? Dokl. Akad. Nauk SSSR,47, No. 5, 323?326 (1945).
[50] B. M. Levitan, ?Duality law for generalized translation operation,? Dokl. Akad. Nauk SSSR,47, No. 6, 401?403 (1945).
[51] B. M. Levitan, ?Application of generalized translation operators to second order linear differential operators,? Usp. Mat. Nauk,4, No. 1, 3?112 (1949).
[52] B. M. Levitan, ?Lie theorems for generalized translation operators,? Dokl. Akad. Nauk SSSR,123, No. 1, 32?35 (1958). · Zbl 0086.32001
[53] B. M. Levitan, ?Inverse Lie theorems for generalized translation operators,? Dokl. Akad. Nauk SSSR,123. No. 2, 243?245 (1958). · Zbl 0086.32001
[54] B. M. Levitan, ?Lie theorems for generalized translation operators,? Usp. Mat. Nauk,16, No. 4, 3?30 (1961).
[55] B. M. Levitan, Generalized Translation Operators and Some of Their Applications [in Russian], Nauka, Moscow (1962). · Zbl 0231.47020
[56] B. M. Levitan, Theory of Generalized Translation Operators [in Russian], Nauka, Moscow (1973).
[57] B. M. Levitan and G. L. Litvinov, ?Generalized translation operators,? in: Mathematical Encyclopedia [in Russian], Vol. 3 (1982), pp. 1112?1116.
[58] D. A. Leites, ?Lie superalgebras,? J. Sov. Math.,30, No. 6 (1985).
[59] G. L. Litvinov, ?Representations of groups on locally convex spaces and topological group algebras,? Tr. Sem. Vektorn. Tenzorn. Analizu, Mosk. Gos. Univ.,16, 267?349 (1972). · Zbl 0257.22017
[60] G. L. Litvinov, ?Conditions under which a representation is determined by its character up to equivalence,? Tr. Sem. Vektorn. Tenzorn. Analizu, Mosk. Gos. Univ.,17, 325?349 (1974). · Zbl 0312.46059
[61] G. L. Litvinov, ?Generalized translation operators and their representations,? Tr. Sem. Vektorn. Tenzorn. Analizu, Mosk. Gos. Univ.,18, 345?371 (1978). · Zbl 0741.47005
[62] G. L. Litvinov, ?Dual topological algebras and topological Hopf algebras,? Tr. Sem. Vektorn. Tenzorn. Analizu, Mosk. Gos. Univ.,18, 372?375 (1978). · Zbl 0436.46037
[63] G. L. Litvinov and V. I. Lomonosov, ?Density theorems in locally convex spaces and their applications,? Tr. Sem. Vektorn. Tenzorn. Analizu, Mosk. Gos. Univ.,20, 210?227 (1981). · Zbl 0471.47025
[64] V. V. Lyuboshenko, Categories of Vector Spaces and Diagonal Symmetries [in Russian], Kiev Polytechnic Inst. (1984).
[65] V. P. Maslov, ?Application of the method of ordered operators for getting precise solutions,? Teor. Mat. Fiz.,33, No. 2, 185?209 (1977). · Zbl 0417.47016 · doi:10.1007/BF01036594
[66] V. P. Maslov and V. E. Nazaikinskii, ?Algebras with general commutation relations and their applications. I. Pseudodifferential equations with increasing coefficients,? J. Sov. Mat.,15, No. 3 (1981).
[67] M. V. Mosolova, ?Functions of noncommuting operators, generated by a graded Lie algebra,? Mat. Zametki,29, No. 1, 35?43 (1981). · Zbl 0459.47031
[68] M. A. Naimark, ?Isomorphic representations of rings and groups,? Dokl. Akad. Nauk SSSR,137, No. 2, 278?281 (1961).
[69] M. A. Naimark, Normed Rings [in Russian], Nauka, Moscow (1968).
[70] N. K. Nikol’skii, ?Invariant subspaces in operator theory and function theory,? J. Sov. Mat.,5, No. 2 (1976).
[71] V. I. Ogievetskii and E. S. Sokachev, ?Supersymmetry and superspace,? Itogi Nauki Tekh. VINITI. Ser. Mat. Analiz,22, 137?173 (1984).
[72] G. I. Ol’shanskii, ?Invariant cones in Lie algebras, Lie semigroups and holomorphic discrete series,? Funkts. Anal. Prilozhen.,15, No. 4, 53?66 (1981). · Zbl 0484.32008 · doi:10.1007/BF01082379
[73] G. I. Ol’shanskii, ?Complex Lie semigroups, generalized Hardy spaces, and the Gel’fand-Gindikin program,? in: Questions of Group Theory and Homological Algebra [in Russian], Yaroslavl’ State Univ. (1982), pp. 85?98.
[74] S. V. Onipchuk, Semisimple Algebras of Bounded Measures on Finite Commutative Hypergroups [in Russian], Uzhgorod Univ. (1983).
[75] V. P. Palamodov, Linear Differential Operators with Constant Coefficients [in Russian], Nauka, Moscow (1967). · Zbl 0191.43401
[76] S. S. Platonov, ?Invariant subspaces of certain function spaces on the group SL(2, C),? Tr. Sem. Vektorn. Tenzorn. Analizu, Mosk. Gos. Univ.,21, 191?258 (1983). · Zbl 0521.22010
[77] P. K. Pashevskii, ?Associative upper-hull of a Lie algebra, its regular representation and ideals,? Tr. Mosk. Mat. O-va,15, 3?54 (1966).
[78] P. K. Rashevskii, ?Description of closed invariant subspaces and certain function spaces,? Tr. Mosk. Mat. O-va,38, 139?185 (1979).
[79] Yu. S. Samoilenko, Spectral Theory of Collections of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1984).
[80] E. K. Sklyanin, ?Algebraic structures connected with the Yang-Baxter equation,? Funkts. Anal. Prilozhen.,16, No. 4, 27?34 (1982).
[81] E. K. Sklyanin, ?Algebraic structures connected with the Yang-Baxter equation. Representations of quantum algebra,? Funkts. Anal. Prilozhen.,17, No. 4, 34?48 (1983). · Zbl 0536.58007
[82] M. Takesaki, ?Tomita theory of modular Hilbert algebras and its applications,? Matematika (Periodic collection of translations of foreign papers),18, No. 3, 83?122; No. 4, 34?63 (1974).
[83] V. A. Tkachenko, ?Spectral decompositions in spaces of analytic functionals,? Izv. Akad. Nauk SSSR, Ser. Mat.,43, No. 3, 654?713 (1979).
[84] S. Helgason, Differential Geometry and Symmetric Spaces [Russian translation], Mir, Moscow (1964). · Zbl 0122.39901
[85] S. Helgason, ?Spherical functions, spherical representations, and the corresponding theorems for the spherical Fourier transform,? Matematika (periodical collection of translations of foreign papers),17, No. 4, 9?14 (1973).
[86] E. Hille and R. Phillips, Functional Analysis and Semigroups [Russian translation], IL, Moscow (1962).
[87] L. A. Khinkis, ?Invariant subspaces of the space of functions on a semisimple Lie group of rank I. I, II,? Voronezh. Leso-Tekhn. Inst., Voronezh (1983), Manuscript deposited No. 4980-83 DEP; No. 7007-83 DEP.
[88] A. N. Kholodov, ?Algebraic theory of multivalued formal groups,? Mat. Sb.,114, No. 2, 299?321 (1981). · Zbl 0474.14029
[89] H. Schaefer, Topological Vector Spaces [Russian translation], Mir, Moscow (1971).
[90] A. Achour and K. Trimeche, ?Operateurs de translation generalisee associes a un operateur differentiel singulier sur un interval borne,? C. R. Acad. Sci. Paris,AB288, No. 7, A399?402 (1979). · Zbl 0401.47019
[91] Somesh Chandra Bagchi and Alladi Sitaram, ?Spherical mean periodic functions on semisimple Lie groups,? Pac. J. Math.,84, No. 2, 241?250 (1979). · Zbl 0442.43017 · doi:10.2140/pjm.1979.84.241
[92] C. Berg, J. P. R. Christensen, and P. Ressel, Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, Springer, New York (1984). · Zbl 0619.43001
[93] W. R. Bloom and H. Heyer, ?The Fourier transform for probability measures on hypergroups,? Rend. Mat. Appl.,2, No. 2, 315?334 (1982). · Zbl 0501.60016
[94] W. R. Bloom and H. Heyer, ?Convergence of convolution products of probability measures on hyper-groups,? Rend. Mat. Appl.,2, No. 3, 547?563 (1982). · Zbl 0507.60004
[95] W. R. Bloom and H. Heyer, ?Convolution semigroups and resolvent families of measures on hypergroups,? Math. Z.,188, No. 4, 449?474 (1985). · Zbl 0558.60008 · doi:10.1007/BF01161650
[96] R. Burger, ?Contributions to duality theory on groups and hypergroups,? in: Top. Mod. Harmonic Anal., Proc. Semin., Torino and Milano, May?June, 1982, Vol. 2, Roma (1983), pp. 1055?1070.
[97] R. W. Carrol, Transmutation and Operator Differential Equations, Amsterdam-New York-London (1979). · Zbl 0416.35021
[98] H. Chebli, ?Theoreme de Paley-Wiener associe a un operateur singuliere sur (0, ?),? J. Math. Pures Appl.,58, No. 1, 1?19 (1979). · Zbl 0362.34019
[99] A. K. Chilana and A. Kumar, ?Ultrastrong Ditkin sets in hypergroups,? Proc. Am. Math. Soc.,77, No. 3, 353?358 (1979). · Zbl 0388.43006 · doi:10.1090/S0002-9939-1979-0545595-1
[100] A. K. Chilana and A. Kumar, ?Spectral synthesis in Segal algebras on hypergroups,? Pac. J. Math.,80, No. 1, 59?76 (1979). · Zbl 0371.43012 · doi:10.2140/pjm.1979.80.59
[101] A. K. Chilana and K. A. Ross, ?Spectral synthesis in hypergroups,? Pac. J. Math.,76, No. 2, 313?328 (1978). · Zbl 0351.43009 · doi:10.2140/pjm.1978.76.313
[102] P. Corsini, ?Ipergruppi semiregolari e regolari,? Rend. Sem. Mat. Univ. Politecn. Torino,40, No. 3, 35?46 (1982).
[103] P. Corsini, ?Recenti resultati in teoria degli ipergruppi,? Bolletino Unione Mat. Ital. (6),A2, No. 2, 133?138 (1983).
[104] J. Delsarte, ?Les fonctions moyenne-periodiques,? J. Math. Pures Appl.,14, 403?453 (1935). · Zbl 0013.25405
[105] J. Delsarte, ?Sur une extension de la formule de Taylor,? J. Math. Pures Appl.,17, No. 3, 213?231 (1938).
[106] J. Delsarte, ?Sur certaines transformations foctionnelles relatives aux equations lineaires aux derivees partielles du second ordre,? C. R. Acad. Sci. Paris,206, 178?182 (1938). · JFM 64.0454.04
[107] J. Delsarte, ?Une extension nouvelle de la theorie de fonctions presque periodiques de Bohr,? Acta Math.,69, 259?317 (1939). · Zbl 0020.01902 · doi:10.1007/BF02547715
[108] J. Delsarte, ?Hypergroupes et operateurs de permutation et de transformation,? Colloque International du CNRS,71, 29?45 (1956).
[109] J. Delsarte and J.-L. Lions, ?Transmutations d’operateurs differentiels dans le domaine complexe,? Commun. Math. Helv.,32, No. 2, 113?128 (1957). · Zbl 0080.29501 · doi:10.1007/BF02564574
[110] G. van Dijk, ?On generalized Gelfand pairs,? Proc. Jpn. Acad.,A60, No. 1, 30?34 (1984). · Zbl 0555.43010
[111] M. Duflo, ?Representations de semigroupes de measures sur un groupe localement compact,? Ann. Inst. Fourier (Grenoble),28, No. 3, 225?249 (1978). · Zbl 0368.22006 · doi:10.5802/aif.712
[112] Ch. F. Dunkl, ?The measure algebra of a locally compact hypergroup,? Trans. Am. Math. Soc.,179, 331?348 (1973). · doi:10.1090/S0002-9947-1973-0320635-2
[113] Ch. F. Dunkl, ?Structure hypergroups for measure algebras,? Pac. J. Math.,47, No. 2, 413?425 (1973). · Zbl 0276.43005 · doi:10.2140/pjm.1973.47.413
[114] Ch. F. Dunkl and D. E. Ramirez, ?Krawtchouk polynomials and the symmetrization of hypergroups,? SIAM J. Math. Anal.,5, No. 3, 351?366 (1974). · Zbl 0249.43006 · doi:10.1137/0505039
[115] Ch. F. Dunkl and D. E. Ramirez, ?A family of countably compact P*-hypergroups,? Trans. Am. Math. Soc.,202, 339?356 (1975). · Zbl 0272.43002
[116] L. Ehrenpreis, ?Mean periodic functions,? Am. J. Math.,77, No. 2, 293?326; No. 4, 731?733 (1955). · Zbl 0068.31702 · doi:10.2307/2372533
[117] L. Ehrenpreis, ?Theory of distributions for locally compact spaces,? Mem. Am. Math. Soc., No. 21 (1956). · Zbl 0072.13004
[118] L. Ehrenpreis, Fourier Analysis in Several Complex Variables, Wiley-Interscience, New York (1970). · Zbl 0195.10401
[119] L. Ehrenpreis and F. I. Mautner, ?Some properties of the Fourier transform on semisimple Lie groups. II, III,? Trans. Am. Math. Soc.,84, 1?55 (1957);90, 431?484 (1959).
[120] M. Enock and J.-M. Schwartz, ?Une dualite dans les algebres de von Neumann,? Bull. Soc. Math. France, Suppl. Mem., No. 44, 1?144 (1975).
[121] W. W. Fairchild, ?Locally compact spaces associated with abstract convolutions,? Indiana Univ. Math. J.,20, No. 5, 427?428 (1970). · Zbl 0211.14502 · doi:10.1512/iumj.1971.20.20036
[122] W. W. Fairchild, ?Convolution on locally compact spaces,? J. Math. Anal. Appl.,41, No. 1, 54?66 (1973). · Zbl 0261.46036 · doi:10.1016/0022-247X(73)90181-9
[123] J. M. G. Fell, ?Nonunitary dual spaces of groups,? Acta Math.,114, No. 3/4, 491?519 (1965). · Zbl 0152.33204 · doi:10.1007/BF02391824
[124] J. J. F. Fournier and K. A. Ross, ?Random Fourier series on compact abelian hypergroups,? J. Austr. Math. Soc.,37, No. 1, 45?81 (1984). · Zbl 0576.43004 · doi:10.1017/S1446788700021741
[125] R. Gangolli, ?Isotropic infinitely divisible measures on symmetric spaces,? Acta Math.,111, 213?246 (1964). · Zbl 0154.43804 · doi:10.1007/BF02391013
[126] R. Ya. Grabovskaya and S. G. Krein, ?Second-order differential equations with operators generating a Lie algebra representation,? Math. Nachr.,75, No. 1, 9?29 (1976). · Zbl 0362.35013 · doi:10.1002/mana.19760750103
[127] K. Hartmann, R. W. Heinrichs, and R. Laser, ?Duals of orbit spaces in groups with relatively compact inner automorphism groups are hypergroups,? Monatsh. Math.,88, No. 3, 229?238 (1979). · Zbl 0416.22008 · doi:10.1007/BF01295237
[128] W. Hauenschild, ?Subhypergroups and normal subgroups,? Math. Ann.,256, No. 1, 1?18 (1981). · Zbl 0465.22005 · doi:10.1007/BF01450938
[129] W. Hauenschild, E. Kaniuth, and A. Kumar, ?Harmonic analysis on central hypergroups and induced representations,? Pac. J. Math.,110, No. 1, 83?112 (1984). · Zbl 0476.43007 · doi:10.2140/pjm.1984.110.83
[130] S. Helgason, ?Lacunary Fourier series on noncommutative groups,? Proc. Am. Math. Soc.,9, No. 5, 782?790 (1958). · Zbl 0091.10905 · doi:10.1090/S0002-9939-1958-0100234-5
[131] H. Heyer, ?Convolution semigroups of probability measures on Gelfand pairs,? Expos. Math.,1, No. 1, 3?45 (1983). · Zbl 0517.60004
[132] H. Heyer, ?Probability theory on hypergroups: a survey,? Lect. Notes Math.,1064, 481?550 (1984). · Zbl 0543.60013 · doi:10.1007/BFb0073660
[133] A. van den Hombergh, ?A note on Mickelsson’s step algebra,? Indag. Math.,37, No. 1, 42?47 (1975). · Zbl 0295.17003
[134] V. Hutson and J. S. Pym, ?Generalized translations associated with a differential operator,? Proc. London Math. Soc.,24, No. 3, 548?576 (1972). · Zbl 0233.47033 · doi:10.1112/plms/s3-24.3.548
[135] C. Ionescu Tulcea and A. B. Simon, ?Spectral representations and unbounded convolution operators,? Proc. Nat. Acad. Sci.,45, No. 12, 1765?1767 (1959). · Zbl 0090.33103 · doi:10.1073/pnas.45.12.1765
[136] R. I. Jewett, ?Spaces with an abstract convolution of measures,? Adv. Math.,8, No. 1, 1?101 (1975). · Zbl 0325.42017 · doi:10.1016/0001-8708(75)90002-X
[137] J. E. Kingman, ?Random walks with spherical symmetry,? Acta Math.,109, No. 1, 11?53 (1963). · Zbl 0121.12803 · doi:10.1007/BF02391808
[138] E. Kirchberg, Darstellungen Coinvolutiver Hopf-W*-Algebren und ihre Anwendung der Nicht-Abelschen Dualitatstheorie Lokalkompacter Gruppen, Akad. der Wiss. der DDR, Zentralinstitut fur Math. und Mech., Berlin (1977).
[139] B. Kostant, ?Graded manifolds, graded Lie theory and prequantization,? Lect. Notes Math.,570, 177?306 (1977). · Zbl 0358.53024 · doi:10.1007/BFb0087788
[140] A. Kumar and A. I. Singh, ?Spectral synthesis in products and quotients of hypergroups,? Pac. J. Math.,94, No. 1, 177?192 (1981). · Zbl 0415.43010 · doi:10.2140/pjm.1981.94.177
[141] R. Lasser, ?Almost periodic functions on hypergroups,? Math. Ann.,252, 183?196 (1980). · Zbl 0431.43007 · doi:10.1007/BF01420082
[142] R. Lasser, ?Fourier-Stieltjes transforms on hypergroups,? Analysis,2, No. 1?4, 281?303 (1982). · Zbl 0542.43004 · doi:10.1524/anly.1982.2.14.281
[143] R. Laser, ?Orthogonal polynomials and hypergroups,? Rend. Mat. Appl.,3, No. 2, 185?209 (1983).
[144] R. Lasser, ?Bochner theorems for hypergroups and their applications to orthogonal polynomial expansions,? J. Approxim. Theory,37, No. 4, 311?325 (1983). · Zbl 0524.43004 · doi:10.1016/0021-9045(83)90040-0
[145] N. Leblanc, ?Algebres de Banach associees a un operateur differentiel de Sturm-Liouville,? Lect. Notes Math.,336, 40?50 (1973). · doi:10.1007/BFb0065786
[146] G. Letac, ?Problemes classiques de probabilite sur un couple de Gelfand,? Lect. Notes Math.,861, 93?120 (1981). · Zbl 0463.60010 · doi:10.1007/BFb0097318
[147] S. MacLane, ?Natural associativity and commutativity,? Rice Univ. Stud.,49, No. 4, 28?46 (1963).
[148] B. Malgrange, ?Existence et approximation des solutions des equations de convolution,? Ann. Inst. Fourier (Grenoble),6, 271?355 (1955?1956). · Zbl 0071.09002 · doi:10.5802/aif.65
[149] G. Maltese, ?Spectral representations for solutions of certain abstract functional equations,? Compos. Math.,15, No. 1, 1?22 (1962).
[150] G. Maltese, ?Spectral representations for some unbounded normal operators,? Trans. Am. Math. Soc.,110, No. 1, 79?87 (1964). · Zbl 0134.31903 · doi:10.1090/S0002-9947-1964-0156209-0
[151] F. Mayer-Lindenberg, ?Zur Dualitatstheorie symmetrischer Paare,? J. Reine Angew. Math.,321, 36?52 (1981).
[152] J. R. McMullen, ?On the dual object of a compact connected group,? Math. Z.,185, No. 4, 539?552 (1984). · Zbl 0513.43007 · doi:10.1007/BF01236263
[153] E. A. Michael, ?Locally multiplicatively-convex topological algebras,? Mem. Am. Math. Soc.,11 (1952).
[154] E. A. Michael, ?Topologies on spaces of subsets,? Trans. Am. Math. Soc.,71, 152?182 (1955). · doi:10.1090/S0002-9947-1951-0042109-4
[155] J. Mickelsson, ?Step algebras of semisimple subalgebras of Lie algebras,? Rep. Math. Phys.,4, No. 4, 307?318 (1973). · Zbl 0285.17005 · doi:10.1016/0034-4877(73)90006-2
[156] J. S. Pym, ?Weakly separately continuous measure algebras,? Math. Ann.,175, 207?219 (1968). · Zbl 0183.14702 · doi:10.1007/BF02052723
[157] J. S. Pym, ?Dual structures for measure algebras,? Proc. London Math. Soc., (3),19, No. 3, 625?660 (1969). · Zbl 0179.46502 · doi:10.1112/plms/s3-19.4.625
[158] K. H. Hofmann, H. Jurgensen, and H. J. Weinert (eds.), Recent Developments in the Algebraic, Analytical, and Topological Theory of Semigroups. Proceedings. Oberwolfach, 1981, Lect. Notes Math., Vol. 998 (1983).
[159] J. Renault, ?A groupoid approach to C*-algebras,? Lect. Notes Math., Vol. 793, Springer-Verlag (1980). · Zbl 0433.46049
[160] K. A. Ross, ?Hypergroups and centers of measure algebras,? Ist. Naz. Alta Mat. (Symposia Math.),22, 189?203 (1977). · Zbl 0371.43003
[161] K. A. Ross, ?Centers of hypergroups,? Trans. Am. Math. Soc.,243, 251?269 (1978). · Zbl 0349.43002 · doi:10.1090/S0002-9947-1978-0493161-2
[162] M. Scheunert, The Theory of Lie Superalgebras, Lect. Notes Math., Vol. 716, Springer-Verlag (1979). · Zbl 0407.17001
[163] J.-M. Schwartz, ?Sur la structure des algebres de Kac. I,? J. Funct. Anal.,34, No. 3, 370?406 (1979). · Zbl 0431.46044 · doi:10.1016/0022-1236(79)90083-1
[164] J.-M. Schwartz, ?Sur la structure des algebres de Kac. II,? Proc. London Math. Soc.,41, No. 3, 465?480 (1980). · doi:10.1112/plms/s3-41.3.465
[165] L. Schwartz, ?Theorie generale des fonctions moyennes-periodiques,? Ann. Math.,48, No. 4, 857?929 (1947). · Zbl 0030.15004 · doi:10.2307/1969386
[166] I. Segal, ?An extension of Plancherel’s formula to separable unimodular locally compact groups,? Ann. Math.,52, No. 2, 272?292 (1950). · Zbl 0045.38502 · doi:10.2307/1969470
[167] A. Sitaram, ?Positive definite distributions on K?G/K,? J. Funct. Anal.,27, No. 2, 179?184 (1978). · Zbl 0393.22010 · doi:10.1016/0022-1236(78)90025-3
[168] A. Sitaram, ?An analogue of the Wiener-Tauberian theorem for spherical transforms on semisimple Lie groups,? Pac. J. Math.,89, No. 2, 439?445 (1980). · Zbl 0455.43008 · doi:10.2140/pjm.1980.89.439
[169] R. Spector, ?Apercu de la theorie des hypergroupes,? Lect. Notes Math.,497, 643?673 (1975). · Zbl 0331.43003 · doi:10.1007/BFb0078026
[170] R. Spector, ?Mesures invariantes sur les hypergroupes,? Trans. Am. Math. Soc.,239, 147?165 (1978). · Zbl 0428.43001 · doi:10.1090/S0002-9947-1978-0463806-1
[171] K. Stephenson, ?Analytic functions and hypergroups of function pairs,? Indiana Univ. Math. J.,31, No. 6, 843?884 (1982). · Zbl 0506.30032 · doi:10.1512/iumj.1982.31.31059
[172] M. Takesaki, ?Duality and von Neumann algebras,? Lect. Notes Math.,247, 665?786 (1972). · Zbl 0238.46063 · doi:10.1007/BFb0058558
[173] N. Tatsuuma, ?Plancherel formula for nonunimodular locally compact groups,? J. Math. Kyoto Univ.,12, No. 1, 179?261 (1972). · Zbl 0241.22017 · doi:10.1215/kjm/1250523567
[174] J. L. Taylor, Measure Algebras. CBMS Regional Conf. Ser. Math., No. 16, Am. Math. Soc., Providence, R. I. (1973).
[175] E. G. F. Thomas, ?The theorem of Bochner-Schwartz-Godement for generalized Gelfand pairs,? ZW-Rept. Math. Inst. Rijksuniv. Groningen, No. 8312 (1983).
[176] E. G. F. Thomas, ?An infinitesimal characterization of Gelfand pairs,? ZW-Rept. Math. Inst. Rijksuniv. Groningen, No. 8313 (1983).
[177] Lau A. To-Ming, ?Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups,? Fund. Math.,118, No. 3, 161?175 (1983). · Zbl 0545.46051
[178] K. Urbanic, ?Generalized convolutions. I, II,? Stud. Math.,23, No. 3, 217?245 (1964);45, No. 1, 57?70 (1973).
[179] R. C. Vrem, ?Lacunarity on compact hypergroups,? Math. Z.,164, 93?104 (1978). · Zbl 0389.43005 · doi:10.1007/BF01174816
[180] R. C. Vrem, ?Harmonic analysis on compact hypergroups,? Pac. J. Math.,85, No. 1, 239?251 (1979). · Zbl 0458.43002 · doi:10.2140/pjm.1979.85.239
[181] R. C. Vrem, ?Continuous measures and lacunarity on hypergroups,? Trans. Am. Math. Soc.,269, No. 2, 549?556 (1982). · Zbl 0491.43007 · doi:10.1090/S0002-9947-1982-0637708-2
[182] R. C. Vrem, ?Hypergroup joins and their dual objects,? Pac. J. Math.,111, No. 2, 483?495 (1984). · Zbl 0495.43006 · doi:10.2140/pjm.1984.111.483
[183] St. Wolfenstetter, ?Jacobi-Polynome und Bessel-Funktionen unter dem Gesichtspunkt der harmonischen Analyse,? Diss. Doct. Naturwiss. Fak. Math, und Inf. Techn. Univ. Munchen (1984). · Zbl 0555.43004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.