Jarosz, Krzysztof; Sawoń, Zbigniew A function algebra without any point derivation. (English) Zbl 0628.46055 Čas. Pěstování Mat. 111, 230-234 (1986). The authors construct a commutative Banach algebra A with unit such that \(\| f^ 2\| =\| f\|^ 2\) holds for any \(f\in A\) and with the following two properties: (1) A admits no non-zero derivation at any point of the maximal ideal space M(A) of A. (2) The Shilov boundary of A is a proper subset of M(A). This answers a question posed by J. Wermer [J. Funct. Anal. 1, 28- 36 (1967; Zbl 0159.421)]. Reviewer: M.von Renteln MSC: 46J10 Banach algebras of continuous functions, function algebras 46J20 Ideals, maximal ideals, boundaries 47B47 Commutators, derivations, elementary operators, etc. Keywords:function algebra without any point derivation; maximal ideal space; Shilov boundary Citations:Zbl 0159.421 PDF BibTeX XML Cite \textit{K. Jarosz} and \textit{Z. Sawoń}, Čas. Pěstování Mat. 111, 230--234 (1986; Zbl 0628.46055) Full Text: EuDML OpenURL