Radchenko, V. N. The strong law of large numbers for m-orthogonal random variables. (English. Russian original) Zbl 0628.60041 Theory Probab. Math. Stat. 33, 111-115 (1986); translation from Teor. Veroyatn. Mat. Stat. 33, 100-103 (1985). Consider a random array \(\{\) X(k): \(k=(k_ 1,,k_ r)\in N^ r\}\) with properties E \(X^ 2(k)<\infty\) and E X(k) X(\(\ell)=0\) if \(\max (| k_ 1-\ell_ 1|,...,| k_ r-\ell_ r|)>m\). The author proves a generalization of the Menshov-Rademacher theorem and gives a sufficient condition for the strong law of large numbers. The proofs are based on a maximal inequality due to the reviewer [Acta Sci. Math. 39, 353-366 (1977; Zbl 0363.60022)]. Reviewer: F.Móricz MSC: 60F15 Strong limit theorems 60G60 Random fields 60E15 Inequalities; stochastic orderings Keywords:Menshov-Rademacher theorem; strong law of large numbers; maximal inequality Citations:Zbl 0363.60022 PDFBibTeX XMLCite \textit{V. N. Radchenko}, Theory Probab. Math. Stat. 33, 111--115 (1986; Zbl 0628.60041); translation from Teor. Veroyatn. Mat. Stat. 33, 100--103 (1985)