Ginzburg, Viktor L.; Gürel, Başak Z. Hyperbolic fixed points and periodic orbits of Hamiltonian diffeomorphisms. (English) Zbl 1408.53112 Duke Math. J. 163, No. 3, 565-590 (2014). Summary: We prove that, for a certain class of closed monotone symplectic manifolds, any Hamiltonian diffeomorphism with a hyperbolic fixed point must necessarily have infinitely many periodic orbits. Among the manifolds in this class are complex projective spaces, some Grassmannians, and also certain product manifolds such as the product of a projective space with a symplectically aspherical manifold of low dimension. A key to the proof of this theorem is the fact that the energy required for a Floer connecting trajectory to approach an iterated hyperbolic orbit and cross its fixed neighborhood is bounded away from zero by a constant independent of the order of iteration. This result, combined with certain properties of the quantum product specific to the above class of manifolds, implies the existence of infinitely many periodic orbits. Cited in 2 ReviewsCited in 13 Documents MSC: 53D40 Symplectic aspects of Floer homology and cohomology 37J10 Symplectic mappings, fixed points (dynamical systems) (MSC2010) 70H12 Periodic and almost periodic solutions for problems in Hamiltonian and Lagrangian mechanics × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] M. Batoréo, On hyperbolic points and periodic orbits of symplectomorphisms , preprint, [math.SG]. 1310.1974v2 [2] B. Bramham and H. Hofer, First steps towards a symplectic dynamics , Surveys in Differential Geometry 17 (2012), 127-178. · Zbl 1382.53023 [3] M. Chance, V. Ginzburg, and B. Gürel, Action-index relations for perfect Hamiltonian diffeomorphisms , J. Symplectic Geom. 11 (2013), 449-474. · Zbl 1285.53078 · doi:10.4310/JSG.2013.v11.n3.a6 [4] B. Collier, E. Kerman, B. Reiniger, B. Turmunkh, and A. Zimmer, A symplectic proof of a theorem of Franks , Compos. Math. 148 (2012), 1969-1984. · Zbl 1267.53093 · doi:10.1112/S0010437X12000474 [5] J. W. Fish, Target-local Gromov compactness , Geom. Topol. 15 (2011), 765-826. · Zbl 1223.32016 · doi:10.2140/gt.2011.15.765 [6] A. Floer, Symplectic fixed points and holomorphic spheres , Comm. Math. Phys. 120 (1989), 575-611. · Zbl 0755.58022 · doi:10.1007/BF01260388 [7] J. Franks, Geodesics on \(S^{2}\) and periodic points of annulus homeomorphisms , Invent. Math. 108 (1992), 403-418. · Zbl 0766.53037 · doi:10.1007/BF02100612 [8] J. Franks, Area preserving homeomorphisms of open surfaces of genus zero , New York J. Math. 2 (1996), 1-19. · Zbl 0891.58033 [9] J. Franks and M. Handel, Periodic points of Hamiltonian surface diffeomorphisms , Geom. Topol. 7 (2003), 713-756. · Zbl 1034.37028 · doi:10.2140/gt.2003.7.713 [10] V. Ginzburg, Coisotropic intersections , Duke Math. J. 140 (2007), 111-163. · Zbl 1129.53062 · doi:10.1215/S0012-7094-07-14014-6 [11] V. Ginzburg, The Conley conjecture , Ann. of Math. (2) 172 (2010), 1127-1180. · Zbl 1228.53098 · doi:10.4007/annals.2010.172.1129 [12] V. Ginzburg and B. Gürel, Action and index spectra and periodic orbits in Hamiltonian dynamics , Geom. Topol. 13 (2009), 2745-2805. · Zbl 1172.53052 · doi:10.2140/gt.2009.13.2745 [13] V.L. Ginzburg, B.Z. Gürel, On the generic existence of periodic orbits in Hamiltonian dynamics , J. Mod. Dyn. 3 (2009), 595-610. · Zbl 1190.53084 · doi:10.3934/jmd.2009.3.595 [14] V.L. Ginzburg, B.Z. Gürel, Conley conjecture for negative monotone symplectic manifolds , Int. Math. Res. Not. IMRN 2012 , 1748-1767. · Zbl 1242.53100 [15] V. Ginzburg and E. Kerman, Homological resonances for Hamiltonian diffeomorphisms and Reeb flows , Int. Math. Res. Not. IMRN 2010 , 53-68. · Zbl 1254.53113 [16] B. Gürel, On non-contractible periodic orbits of Hamiltonian diffeomorphisms , Bull. Lond. Math. Soc. 45 (2013), 1227-1234. · Zbl 1283.37061 [17] B. Gürel, Periodic orbits of Hamiltonian systems linear and hyperbolic at infinity , preprint, [math.SG]. 1209.3529v2 [18] S. Hayashi, Connecting invariant manifolds and the solution of the \(C^{1}\)-stability and \(\Omega\)-stability conjectures for flows , Ann. of Math. (2) 145 (1997), 81-137. · Zbl 0871.58067 · doi:10.2307/2951824 [19] D. Hein, The Conley conjecture for irrational symplectic manifolds , J. Symplectic Geom. 10 (2012), 183-202. · Zbl 1275.37026 · doi:10.4310/JSG.2012.v10.n2.a2 [20] N. Hingston, Subharmonic solutions of Hamiltonian equations on tori , Ann. of Math. (2) 170 (2009), 529-560. · Zbl 1180.58009 · doi:10.4007/annals.2009.170.529 [21] H. Hofer and D. Salamon, “Floer homology and Novikov rings” in The Floer Memorial Volume , Progr. Math. 133 , Birkhäuser, Basel, 1995, 483-524. · Zbl 0842.58029 · doi:10.1007/978-3-0348-9217-9_20 [22] H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics , Birkhäuser, Basel, 1994. · Zbl 0805.58003 [23] E. Kerman, On primes and period growth for Hamiltonian diffeomorphisms , J. Mod. Dyn. 6 (2012), 41-58. · Zbl 1244.53095 · doi:10.3934/jmd.2012.6.41 [24] H.V. Lê and K. Ono, “Cup-length estimates for symplectic fixed points” in Contact and Symplectic Geometry (Cambridge, England, 1994) , Publ. Newton Inst. 8 , Cambridge Univ. Press, Cambridge, 1996, 268-295. · Zbl 0874.53030 [25] P. Le Calvez, Periodic orbits of Hamiltonian homeomorphisms of surfaces , Duke Math. J. 133 (2006), 125-184. · Zbl 1101.37031 · doi:10.1215/S0012-7094-06-13315-X [26] Y. Long, Index Theory for Symplectic Paths with Applications , Progr. Math. 207 , Birkhäuser, Basel, 2002. · Zbl 1012.37012 [27] D. McDuff and D. Salamon, J-holomorphic Curves and Symplectic Topology , Amer. Math. Soc. Colloq. Publ. 52 , Amer. Math. Soc., Providence, 2004. · Zbl 1064.53051 [28] M. McLean, Local Floer homology and infinitely many simple Reeb orbits , Algebr. Geom. Topol. 12 (2012), 1901-1923. · Zbl 1253.53078 [29] K. Ono, On the Arnold conjecture for weakly monotone symplectic manifolds , Invent. Math. 119 (1995), 519-537. · Zbl 0823.53025 · doi:10.1007/BF01245191 [30] S. Piunikhin, D. Salamon, and M. Schwarz, “Symplectic Floer-Donaldson theory and quantum cohomology” in Contact and Symplectic Geometry (Cambridge, England, 1994) , Publ. Newton Inst. 8 , Cambridge Univ. Press, Cambridge, 1996, 171-200. · Zbl 0874.53031 [31] C. Pugh and C. Robinson, The \(C^{1}\) closing lemma, including Hamiltonians , Ergodic Theory Dynam. Systems 3 (1983), 261-313. · Zbl 0548.58012 · doi:10.1017/S0143385700001978 [32] D. Ruelle, Elements of Differentiable Dynamics and Bifurcation Theory , Academic Press, Boston, 1989. · Zbl 0684.58001 [33] D. Salamon, “Lectures on Floer homology” in Symplectic Geometry and Topology (Park City, Utah, 1997) , IAS/Park City Math. Ser. 7 , Amer. Math. Soc, Providence, 1999, 143-230. [34] D. Salamon and E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index , Comm. Pure Appl. Math. 45 (1992), 1303-1360. · Zbl 0766.58023 · doi:10.1002/cpa.3160451004 [35] M. Usher, Deformed Hamiltonian Floer theory, capacity estimates, and Calabi quasimorphisms , Geom. Topol. 15 (2011), 1313-1417. · Zbl 1223.53063 · doi:10.2140/gt.2011.15.1313 [36] Z. Xia, Homoclinic points in symplectic and volume-preserving diffeomorphisms , Comm. Math. Phys. 177 (1996), 435-449. · Zbl 0959.37050 · doi:10.1007/BF02101901 [37] E. Zehnder, Lectures on Dynamical Systems: Hamiltonian Vector Fields and Symplectic Capacities , EMS Textbk. Math., Eur. Math. Soc., Zürich, 2010. · Zbl 1195.37001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.