×

A new algorithm for solving the multiple-sets split feasibility problem in Banach spaces. (English) Zbl 1480.47102

Summary: In this article, we propose a new algorithm for solving the multiple-sets split feasibility problem in Banach spaces. Under some mild conditions we establish the norm convergence of the proposed algorithm. One advantage of the proposed algorithm is that its norm convergence does not need the weak-to-weak continuity of the duality mapping.

MSC:

47J25 Iterative procedures involving nonlinear operators
46B20 Geometry and structure of normed linear spaces
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alber Y., Theory and Applications of Nonlinear Operators of Monotonic and Accretive Type pp 15– (1996)
[2] DOI: 10.1287/moor.26.2.248.10558 · Zbl 1082.65058
[3] DOI: 10.1088/0266-5611/18/2/310 · Zbl 0996.65048
[4] DOI: 10.1088/0031-9155/51/10/001
[5] DOI: 10.1007/BF02142692 · Zbl 0828.65065
[6] DOI: 10.1088/0266-5611/21/6/017 · Zbl 1089.65046
[7] DOI: 10.1007/978-94-009-2121-4
[8] DOI: 10.1137/050626090 · Zbl 1179.94031
[9] DOI: 10.1080/01630569208816489 · Zbl 0769.65026
[10] DOI: 10.1007/978-94-009-1740-8
[11] DOI: 10.1088/0266-5611/28/8/085004 · Zbl 1262.90193
[12] DOI: 10.1007/978-3-662-35347-9
[13] DOI: 10.1016/S0022-247X(02)00458-4 · Zbl 1035.47048
[14] DOI: 10.1016/0021-9045(88)90025-1 · Zbl 0676.41028
[15] DOI: 10.1088/0266-5611/21/5/009 · Zbl 1080.65033
[16] DOI: 10.1088/0266-5611/24/5/055008 · Zbl 1153.46308
[17] Solodov M. V., Math. Programming Ser. A 87 pp 189– (2000) · Zbl 0971.90062
[18] Wang F., Fixed Point Theory 12 pp 489– (2011)
[19] DOI: 10.1016/j.na.2011.03.044 · Zbl 1308.47079
[20] DOI: 10.1016/0362-546X(91)90200-K · Zbl 0757.46033
[21] DOI: 10.1088/0266-5611/22/6/007 · Zbl 1126.47057
[22] DOI: 10.1088/0266-5611/20/4/014 · Zbl 1066.65047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.