×

Min-max theory and the Willmore conjecture. (English) Zbl 1297.49079

The Willmore energy of a compact immersed surface in Euclidean space is the integral of the square of the mean curvature. In a short paper, T. J. Willmore [An. Sti. Univ. Al. I. Cuza Iasi, N. Ser., Sect. Ia 11B, 493–496 (1965; Zbl 0171.20001)] initiated the study of that functional by considering its value on compact surfaces smoothly embedded in \(3\)-dimensional Euclidean space. Willmore required but a few lines to prove that \({\mathcal W}(\Sigma) \geq 4\pi\), with equality if and only if \(\Sigma\) is a round sphere. He also calculated the value of \({\mathcal W}(\Sigma)\) for a torus of the form \[ (u,v) \mapsto \Big( (a+ b \cos u) \cos v,\, (a + b \cos u)\sin v,\, b \sin v\Big) \,, \] for which the minimum value, \({\mathcal W}(\Sigma) = 2\pi^2\), occurs when \(a/b =\sqrt{2}\). Willmore then conjectured that \({\mathcal W}(\Sigma)\geq 2\pi^2\) holds for every torus. This simply stated conjecture has been quite fruitful, leading to many significant developments. The paper under review culminates this work by affirmatively resolving the Willmore conjecture.
By means of the stereographic projection from the punctured 3-sphere onto the 3-dimensional Euclidean space the Willmore conjecture can be reformulated as a statement concerning a torus in the 3-sphere. The conjecture is then that the minimum of the Willmore energy is realized by the Clifford torus. In the paper under review, the authors prove specifically that, in the 3-sphere, any embedded closed surface of genus at least one has Willmore energy at least as large as that of the Clifford torus and equality holds if and only if the surface is conformally equivalent to the Clifford torus. L. Simon [Commun. Anal. Geom. 1, No. 2, 281–326 (1993; Zbl 0848.58012)] proved that in the \(n\)-dimensional Euclidean space there exists a compactly embedded real analytic torus that realizes the minimum of the Willmore energy, and a work of P. Li and S.-T. Yau [Invent. Math. 69, 269–291 (1982; Zbl 0503.53042)] shows that if a torus in the 3-sphere is not embedded, then it will have Willmore energy strictly larger than that of the Clifford torus. Thus the authors’ result proves the Willmore conjecture.
To obtain their result, the authors apply min-max theory in the context of geometric measure theory. This approach was introduced by F. J. Almgren, Jr. in mimeographed notes that first circulated in 1965, but which remain unpublished. J. T. Pitts [Existence and regularity of minimal surfaces on Riemannian manifolds. Princeton, New Jersey: Princeton University Press; University of Tokyo Press (1981; Zbl 0462.58003)] built on and strengthened Almgren’s min-max method. Though there are other treatments of min-max methods, the authors use the Almgren-Pitts approach because it imposes weaker regularity and convergence conditions on the min-max family of surfaces.
The authors provide a substantial outline of their proof in the second section of the paper, temporarily putting aside technical difficulties while emphasizing the main ideas. Ultimately, the technical effort required by the authors to accomplish their proof is substantial.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
49Q20 Variational problems in a geometric measure-theoretic setting
49J35 Existence of solutions for minimax problems
53A30 Conformal differential geometry (MSC2010)
53A05 Surfaces in Euclidean and related spaces
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
PDF BibTeX XML Cite
Full Text: DOI arXiv

Online Encyclopedia of Integer Sequences:

Decimal expansion of 2*Pi^2.

References:

[1] W. K. Allard and F. J. Almgren Jr., ”The structure of stationary one dimensional varifolds with positive density,” Invent. Math., vol. 34, iss. 2, pp. 83-97, 1976. · Zbl 0339.49020
[2] F. J. Almgren Jr., ”The homotopy groups of the integral cycle groups,” Topology, vol. 1, pp. 257-299, 1962. · Zbl 0118.18503
[3] F. J. Almgren Jr., The theory of varifolds, 1965.
[4] F. J. Almgren Jr., ”Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem,” Ann. of Math., vol. 84, pp. 277-292, 1966. · Zbl 0146.11905
[5] B. Ammann, ”The Willmore conjecture for immersed tori with small curvature integral,” Manuscripta Math., vol. 101, iss. 1, pp. 1-22, 2000. · Zbl 0959.53032
[6] M. Bauer and E. Kuwert, ”Existence of minimizing Willmore surfaces of prescribed genus,” Int. Math. Res. Not., vol. 2003, iss. 10, pp. 553-576, 2003. · Zbl 1029.53073
[7] M. Mutz and D. Benisimon, ”Observation of toroidal vesicle,” Phys. Rev. A., vol. 43, pp. 4525-4527, 1991.
[8] W. Blaschke, Vorlesungen Über Differentialgeometrie III, Berlin: Springer-Verlag, 1929. · JFM 55.0422.01
[9] R. L. Bryant, ”A duality theorem for Willmore surfaces,” J. Differential Geom., vol. 20, iss. 1, pp. 23-53, 1984. · Zbl 0555.53002
[10] R. L. Bryant, ”Surfaces in conformal geometry,” in The Mathematical Heritage of Hermann Weyl, Providence, RI: Amer. Math. Soc., 1988, vol. 48, pp. 227-240. · Zbl 0654.53010
[11] B. Chen, ”On the total curvature of immersed manifolds. VI. Submanifolds of finite type and their applications,” Bull. Inst. Math. Acad. Sinica, vol. 11, iss. 3, pp. 309-328, 1983. · Zbl 0514.53049
[12] H. I. Choi and R. Schoen, ”The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature,” Invent. Math., vol. 81, iss. 3, pp. 387-394, 1985. · Zbl 0577.53044
[13] T. H. Colding and C. De Lellis, ”The min-max construction of minimal surfaces,” in Surveys in Differential Geometry, Vol. VIII, Int. Press, Somerville, MA, 2003, vol. VIII, pp. 75-107. · Zbl 1051.53052
[14] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Boca Raton, FL: CRC Press, 1992. · Zbl 0804.28001
[15] S. Germain, Recherches sur la théorie des surfaces élastiques, 1921.
[16] E. Heintze and H. Karcher, ”A general comparison theorem with applications to volume estimates for submanifolds,” Ann. Sci. École Norm. Sup., vol. 11, iss. 4, pp. 451-470, 1978. · Zbl 0416.53027
[17] W. Helfrich, ”Elastic properties of lipid bilayers: Theory and possible experiments,” Z. Naturforsch., vol. 28, pp. 693-703, 1973.
[18] U. Hertrich-Jeromin and U. Pinkall, ”Ein Beweis der Willmoreschen Vermutung für Kanaltori,” J. Reine Angew. Math., vol. 430, pp. 21-34, 1992. · Zbl 0749.53040
[19] W. Kühnel and U. Pinkall, ”On total mean curvatures,” Quart. J. Math. Oxford Ser., vol. 37, iss. 148, pp. 437-447, 1986. · Zbl 0627.53044
[20] R. Kusner, ”Conformal geometry and complete minimal surfaces,” Bull. Amer. Math. Soc., vol. 17, iss. 2, pp. 291-295, 1987. · Zbl 0634.53004
[21] R. Kusner, ”Comparison surfaces for the Willmore problem,” Pacific J. Math., vol. 138, iss. 2, pp. 317-345, 1989. · Zbl 0643.53044
[22] R. Kusner, ”Estimates for the biharmonic energy on unbounded planar domains, and the existence of surfaces of every genus that minimize the squared-mean-curvature integral,” in Elliptic and Parabolic Methods in Geometry, Wellesley, MA: A K Peters, 1996, pp. 67-72. · Zbl 0874.49038
[23] E. Kuwert and R. Schätzle, ”Removability of point singularities of Willmore surfaces,” Ann. of Math., vol. 160, iss. 1, pp. 315-357, 2004. · Zbl 1078.53007
[24] E. Kuwert, Y. Li, and R. Schätzle, ”The large genus limit of the infimum of the Willmore energy,” Amer. J. Math., vol. 132, iss. 1, pp. 37-51, 2010. · Zbl 1188.53057
[25] J. Langer and D. Singer, ”Curves in the hyperbolic plane and mean curvature of tori in \(3\)-space,” Bull. London Math. Soc., vol. 16, iss. 5, pp. 531-534, 1984. · Zbl 0554.53014
[26] R. Langevin and H. Rosenberg, ”On curvature integrals and knots,” Topology, vol. 15, iss. 4, pp. 405-416, 1976. · Zbl 0341.53037
[27] B. H. Lawson Jr., ”Complete minimal surfaces in \(S^3\),” Ann. of Math., vol. 92, pp. 335-374, 1970. · Zbl 0205.52001
[28] P. Li and S. T. Yau, ”A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces,” Invent. Math., vol. 69, iss. 2, pp. 269-291, 1982. · Zbl 0503.53042
[29] W. S. Massey, A Basic Course in Algebraic Topology, New York: Springer-Verlag, 1991, vol. 127. · Zbl 0725.55001
[30] X. Michalet and D. Bensimon, ”Vesicles of toroidal topology: observed morphology and shape transformations,” J. Phys. II France, vol. 5, pp. 263-287, 1995.
[31] S. Montiel and A. Ros, ”Minimal immersions of surfaces by the first eigenfunctions and conformal area,” Invent. Math., vol. 83, iss. 1, pp. 153-166, 1985. · Zbl 0584.53026
[32] U. Pinkall, ”Hopf tori in \(S^3\),” Invent. Math., vol. 81, iss. 2, pp. 379-386, 1985. · Zbl 0585.53051
[33] J. T. Pitts, Existence and Regularity of Minimal Surfaces on Riemannian Manifolds, Princeton, N.J.: Princeton Univ. Press, 1981, vol. 27. · Zbl 0462.58003
[34] S. D. Poisson, Mémoire sur les Surfaces Élastiques, Inst. de France, 1812.
[35] T. Rivière, ”Analysis aspects of Willmore surfaces,” Invent. Math., vol. 174, iss. 1, pp. 1-45, 2008. · Zbl 1155.53031
[36] A. Ros, ”The Willmore conjecture in the real projective space,” Math. Res. Lett., vol. 6, iss. 5-6, pp. 487-493, 1999. · Zbl 0951.53044
[37] A. Ros, ”The isoperimetric and Willmore problems,” in Global Differential Geometry: The Mathematical Legacy of Alfred Gray, Providence, RI: Amer. Math. Soc., 2001, vol. 288, pp. 149-161. · Zbl 1005.53054
[38] R. Schoen and L. Simon, ”Regularity of stable minimal hypersurfaces,” Comm. Pure Appl. Math., vol. 34, iss. 6, pp. 741-797, 1981. · Zbl 0497.49034
[39] K. Shiohama and R. Takagi, ”A characterization of a standard torus in \(E^3\),” J. Differential Geometry, vol. 4, pp. 477-485, 1970. · Zbl 0205.51402
[40] L. Simon, Lectures on Geometric Measure Theory, Canberra: Australian National University Centre for Mathematical Analysis, 1983, vol. 3. · Zbl 0546.49019
[41] L. Simon, ”Existence of surfaces minimizing the Willmore functional,” Comm. Anal. Geom., vol. 1, iss. 2, pp. 281-326, 1993. · Zbl 0848.58012
[42] F. Smith, On the existence of embedded minimal 2\?spheres in the 3-sphere, endowed with an arbitrary Riemannian metric, 1982.
[43] G. Thomsen, ”Über Konforme Geometrie, I: Grundlagen der Konformen Flächentheorie,” Hamb. Math. Abh., vol. 3, pp. 31-56, 1923. · JFM 49.0530.02
[44] P. Topping, ”Towards the Willmore conjecture,” Calc. Var. Partial Differential Equations, vol. 11, iss. 4, pp. 361-393, 2000. · Zbl 1058.53060
[45] P. Topping, ”An approach to the Willmore conjecture,” in Global Theory of Minimal Surfaces, Providence, RI: Amer. Math. Soc., 2005, vol. 2, pp. 769-772. · Zbl 1110.53004
[46] F. Urbano, ”Minimal surfaces with low index in the three-dimensional sphere,” Proc. Amer. Math. Soc., vol. 108, iss. 4, pp. 989-992, 1990. · Zbl 0691.53049
[47] J. L. Weiner, ”On a problem of Chen, Willmore, et al.,” Indiana Univ. Math. J., vol. 27, iss. 1, pp. 19-35, 1978. · Zbl 0343.53038
[48] J. H. White, ”A global invariant of conformal mappings in space,” Proc. Amer. Math. Soc., vol. 38, pp. 162-164, 1973. · Zbl 0256.53008
[49] T. J. Willmore, ”Note on embedded surfaces,” An. Şti. Univ. “Al. I. Cuza” Iaşi Secţ. I a Mat., vol. 11B, pp. 493-496, 1965. · Zbl 0171.20001
[50] T. J. Willmore, ”Mean curvature of Riemannian immersions,” J. London Math. Soc., vol. 3, pp. 307-310, 1971. · Zbl 0208.49802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.