## Varieties of distributive rotational lattices.(English)Zbl 1318.06005

A rotational lattice is a (universal) algebra $$\mathbf L=(L;\vee,\wedge,g)$$, where $$(L;\vee,\wedge)$$ is a lattice, $$g$$ is an automorphism of this lattice and $$g^n(x)=g(g(\cdots g(x)\cdots))=x$$ for all $$x\in L$$ (with $$n$$ copies of $$g$$). The class of these algebras, for a given $$n$$, is denoted by $$\mathbf{RL}(n)$$. If the lattice $$(L;\vee,\wedge)$$ is distributive, then $$\mathbf L$$ is called distributive rotational lattice and $$\mathbf{DRL}(n)$$ means the class of all distributive members of $$\mathbf{RL}(n)$$. It can be shown that $$\mathbf{DRL}(n)$$ are varieties for any natural $$n$$. Note that the class of all distributive rotational lattices is not a variety.
The authors investigate the varieties $$\mathbf{DRL}(n)$$ and characterize the subdirectly irreducible members of these classes. More precisely, let $$B_n=(B_n;\vee,\wedge)$$ denote the Boolean lattice of length $$n$$. Let $$a^{(n)}_0,\ldots,a^{(n)}_{n-1}$$ be the atoms of $$B_n$$. Define the automorphism $$g$$ of $$B_n$$ as follows: $$g(a^{(n)}_i)=a^{(n)}_{i+1}$$ where $$i+1$$ is modulo $$n$$. This way we obtain $$\mathbf B_n=(B_n;\vee,\wedge,g)\in\mathbf{DRL}(n)$$ where $$n$$ is minimal with the property $$g^n(x)=x$$ for each $$x\in\mathbf B_n$$.
Main results: (1) The subdirectly irreducible distributive rotational lattices are exactly the algebras $$\mathbf B_n$$, $$n\in N$$. In addition, the algebras $$\mathbf B_n$$ are simple. (2) $$\mathbf B_m\in\mathbf{DRL}(n)$$ iff $$m$$ divides $$n$$. (3) $$\mathbf{DRL}(m)\vee\mathbf{DRL}(n)=\mathbf{DRL}(\text{lcm}\{m,n\})$$ and $$\mathbf{DRL}(m)\cap\mathbf{DRL}(n)=\mathbf{DRL}(\gcd\{m,n\})$$.

### MSC:

 06B75 Generalizations of lattices 06B20 Varieties of lattices 06D05 Structure and representation theory of distributive lattices 08B26 Subdirect products and subdirect irreducibility
Full Text:

### References:

 [1] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. Graduate Texts in Mathematics 78, Springer-Verlag, New York-Berlin, 1981. The Millennium Edition: · Zbl 0478.08001 [2] Chajda, I., Czédli, G: How to generate the involution lattice of quasiorders?. Studia Sci. Math. Hungar. 32 (1996), 415-427. · Zbl 0864.06003 [3] Chajda, I., Czédli, G., Halaš, R.: Independent joins of tolerance factorable varieties. Algebra Universalis 69 (2013), 83-92. · Zbl 1295.08006 [4] Czédli, G., Szabó, L.: Quasiorders of lattices versus pairs of congruences. Acta Sci. Math. (Szeged) 60 (1995), 207-211. · Zbl 0829.06008 [5] Dziobiak, W., Ježek, J., Maróti, M.: Minimal varieties and quasivarieties of semilattices with one automorphism. Semigroup Forum 78 (2009), 253-261. · Zbl 1171.08002 [6] Grätzer, G.:: Lattice Theory: Foundation. Birkhäuser Verlag, Basel, 2011. · Zbl 1233.06001 [7] Ježek, J.: Subdirectly irreducible semilattices with an automorphism. Semigroup Forum 43 (1991), 178-186. · Zbl 0770.08004 [8] Jónsson, B.: Algebras whose congruence lattices are distributive. Math. Scand. 21 (1967), 110-121. · Zbl 0167.28401 [9] Maróti, M.: Semilattices with a group of automorphisms. Algebra Universalis 38 (1997), 238-265. · Zbl 0934.08001 [10] Nagy, I. V.: Minimal quasivarieties of semilattices over commutative groups. Algebra Universalis · Zbl 1306.08005 [11] Vetterlein, T.: Boolean algebras with an automorphism group: a framework for Łukasiewicz logic. J. Mult.-Val. Log. Soft Comput. 14 (2008), 51-67. · Zbl 1236.03018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.