zbMATH — the first resource for mathematics

Unicorn: parallel adaptive finite element simulation of turbulent flow and fluid-structure interaction for deforming domains and complex geometry. (English) Zbl 1284.76223
Summary: We present a framework for adaptive finite element computation of turbulent flow and fluid-structure interaction, with focus on general algorithms that allow for complex geometry and deforming domains. We give basic models and finite element discretization methods, adaptive algorithms and strategies for efficient parallel implementation. To illustrate the capabilities of the computational framework, we show a number of application examples from aerodynamics, aero-acoustics, biomedicine and geophysics. The computational tools are free to download open source as Unicorn, and as a high performance branch of the finite element problem solving environment DOLFIN, both part of the FEniCS project.

76F65 Direct numerical and large eddy simulation of turbulence
76M10 Finite element methods applied to problems in fluid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Full Text: DOI
[1] Logg, A.; Wells, G. N., DOLFIN: automated finite element computing, ACM Trans Math Softw, 37, 2, 1-28, (2010) · Zbl 1364.65254
[2] Logg A, Wells GN, Hake J, et al. DOLFIN: a C++/python finite element library; 2011. <http://launchpad.net/dolfin>.
[3] Hoffman J, Jansson J, Nazarov M, Jansson N. Unicorn; 2011. <http://launchpad.net/unicorn/hpc>.
[4] FEniCS. FEniCS project; 2003. <http://www.fenicsproject.org>.
[5] Hoffman, J.; Johnson, C., Computational turbulent incompressible flow; applied mathematics: body and soul, (2007), Springer, vol. 4 · Zbl 1114.76002
[6] Sagaut, P., Large eddy simulation for incompressible flows, (2005), Springer-Verlag Berlin, Heidelberg, New York
[7] Jansson, N.; Hoffman, J.; Jansson, J., Framework for massively parallel adaptive finite element computational fluid dynamics on tetrahedral meshes, SIAM J Sci Comput, 34, 1, C24-C41, (2012) · Zbl 1237.68244
[8] Piomelli, U.; Balaras, E., Wall-layer models for large-eddy simulation, Annu Rev Fluid Mech, 34, 349-374, (2002) · Zbl 1006.76041
[9] Hoffman, J.; Jansson, J.; Stöckli, M., Unified continuum modeling of fluid – structure interaction, Math Mod Methods Appl Sci, (2011) · Zbl 1315.74012
[10] Bazilevs, Y.; Calo, V.; Cottrell, J.; Hughes, T.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput Methods Appl Mech Eng, 197, 1-4, 173-201, (2007) · Zbl 1169.76352
[11] Guasch, O.; Codina, R., A heuristic argument for the sole use of numerical stabilization with no physical LES modeling in the simulation of incompressible turbulent flows, Preprint Universitat Politecnica de Catalunya, (2007)
[12] Guermond, J. L.; Pasquetti, R.; Popov, B., From suitable weak solutions to entropy viscosity, J Sci Comput, 49, 35-50, (2011) · Zbl 1432.76080
[13] Hoffman, J.; Johnson, C., Blow up of incompressible Euler equations, BIT, 48, 285-307, (2008) · Zbl 1143.76012
[14] Hansbo, P., A crank – nicolson type space – time finite element method for computing on moving meshes, J Comput Phys, 159, 274-289, (2000) · Zbl 0961.65091
[15] Hoffman, J.; Jansson, J.; de Abreu, R. V., Adaptive modeling of turbulent flow with residual based turbulent kinetic energy dissipation, Comput Methods Appl Mech Eng, 200, 37-40, 2758-2767, (2011) · Zbl 1230.76025
[16] Nazarov M. Adaptive algorithms and high order stabilization for finite element computation of turbulent compressible flow. Ph.D. thesis, KTH, Numerical Analysis, NA; 2011 [QC 20110627].
[17] Nazarov M. Convergence of a residual based artificial viscosity finite element method. Tech. Rep. KTH-CTL-4015; Computational Technology Laboratory; 2011. <http://www.publ.kth.se/trita/ctl-4/015/>.
[18] Nazarov M, Hoffman J. Residual based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods. Int J Numer Methods Fluids 2012, in press. doi.org/10.1002/fld.3663.
[19] Nazarov, M.; Hoffman, J., An adaptive finite element method for inviscid compressible flow, Int J Numer Methods Fluids, 64, 188, 1102-1128, (2010) · Zbl 1427.76139
[20] Guermond, J. L.; Pasquetti, R., Entropy-based nonlinear viscosity for Fourier approximations of conservation laws, CR Acad Sci, Ser. I, 346, 801-806, (2008) · Zbl 1145.65079
[21] Guermond, J. L.; Pasquetti, R.; Popov, B., Entropy viscosity method for nonlinear conservation laws, J Comput Phys, 230, 2011, 4248-4267, (2011) · Zbl 1220.65134
[22] Löhner, R., Applied CFD techniques: an introduction based on finite element methods, (2001), John Wiley & Sons
[23] Schumann, U., Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli, J Comput Phys, 18, 4, 376-404, (1975) · Zbl 0403.76049
[24] Hoffman, J.; Jansson, N. A., Computational study of turbulent flow separation for a circular cylinder using skin friction boundary conditions, (Quality and reliability of large-eddy simulations II; ERCOFTAC series, vol. 16, (2011), Springer Netherlands), 57-68 · Zbl 1303.76087
[25] de Abreu RV, Jansson N, Hoffman J. Adaptive computation of aeroacoustic sources for rudimentary landing gear. In: Proceedings for benchmark problems for airframe noise computations I, Stockholm; 2010.
[26] Löhner, R.; Yang, C., Improved ALE mesh velocities for moving bodies, Commun Numer Methods Eng, 12, 10, 599-608, (1996) · Zbl 0858.76042
[27] Compère, G.; Remacle, J.; Jansson, J.; Hoffman, J., A mesh adaptation framework for dealing with large deforming meshes, Int J Numer Methods Eng, 82, 7, 843-867, (2010) · Zbl 1188.74093
[28] Eriksson, K.; Estep, D.; Hansbo, P.; Johnson, C., Introduction to adaptive methods for differential equations, Acta Numer, 4, 105-158, (1995) · Zbl 0829.65122
[29] Becker, R.; Rannacher, R., A posteriori error estimation in finite element methods, Acta Numer, 10, 1-103, (2001) · Zbl 1105.65349
[30] Giles, M.; Süli, E., Adjoint methods for PDES: a posteriori error analysis and postprocessing by duality, Acta Numer, 11, 145-236, (2002) · Zbl 1105.65350
[31] Hoffman, J., Computation of mean drag for bluff body problems using adaptive DNS/LES, SIAM J Sci Comput, 27, 1, 184-207, (2005) · Zbl 1149.65318
[32] Hoffman, J.; Johnson, C., A new approach to computational turbulence modeling, Comput Methods Appl Mech Eng, 195, 2865-2880, (2006) · Zbl 1176.76065
[33] Hoffman, J., Adaptive simulation of the subcritical flow past a sphere, J Fluid Mech, 568, 77-88, (2006) · Zbl 1177.76157
[34] Hoffman, J., Efficient computation of mean drag for the subcritical flow past a circular cylinder using general Galerkin G2, Int J Numer Methods Fluids, 59, 11, 1241-1258, (2009) · Zbl 1409.76062
[35] Degirmenci N, Hoffman J, Jansson J. An adaptive finite element method for unified continuum fluid – structure interaction. Tech. Rep. KTH-CTL-4020; Computational Technology Laboratory; 2011. <http://www.publ.kth.se/trita/ctl-4/020/>.
[36] Rivara, M., New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations, Int J Numer Methods Eng, 40, 18, 3313-3324, (1997) · Zbl 0980.65144
[37] Jansson N. High performance adaptive finite element methods for turbulent fluid flow. Licentiate thesis, Royal Institute of Technology, School of Computer Science and Engineering; 2011. TRITA-CSC-A 2011:02.
[38] Dijkstra, E. W.; Scholten, C. S., Termination detection for diffusing computations, Inform Process Lett, 11, 1, 1-4, (1980) · Zbl 0439.68039
[39] Bertsekas, D. P.; Tsitsiklis, J. N., Parallel and distributed computation: numerical methods, Athena Sci, (1997)
[40] Oliker L. PLUM parallel load balancing for unstructured adaptive meshes. Tech. Rep. RIACS-TR-98-01, RIACS, NASA Ames Research Center; 1998. · Zbl 0920.68016
[41] Jansson N, Hoffman J, Jansson J. Performance of DOLFIN and Unicorn on modern high-performance distributed memory architectures. Tech. Rep. KTH-CTL-4012. Computational Technology Laboratory; 2010. <http://www.publ.kth.se/trita/ctl-4/012>.
[42] Schloegel K, Karypis G, Kumar V, Biswas R, Oliker L. A performance study of diffusive vs. remapped load-balancing schemes. In: 11th Intl conference on parallel and distributed computing systems; 1998.
[43] Sahni, O.; Carothers, C. D.; Shephard, M. S.; Jansen, K. E., Strong scaling analysis of a parallel, unstructured, implicit solver and the influence of the operating system interference, Sci Program, 17, 261-274, (2009), <http://dl.acm.org/citation.cfm?id=1611486.1611492>
[44] Schloegel K, Karypis G, Kumar V. ParMETIS, parallel graph partitioning and sparse matrix ordering library; 2011.
[45] Balay S, Buschelman K, Gropp WD, Kaushik D, Knepley MG, McInnes LC, et al. PETSc web page; 2009. <Http://www.mcs.anl.gov/petsc>.
[46] Jansson N, Hoffman J, Nazarov M. Adaptive simulation of turbulent flow past a full car model. In: Proceedings of the 2011 ACM/IEEE International conference for high performance computing, networking, storage and analysis, state of the practice reports. SC ’11; 2011.
[47] Jansson N, Hoffman J. Simulation of the transient flow past a car, in preparation.
[48] Spalart PR, Mejia K. Analysis of experimental and numerical studies of the rudimentary landing gear. In: Proceedings for the 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Orlando, Florida; 2011.
[49] de Abreu RV, Jansson N, Hoffman J. Adaptive computation of aeroacoustic sources for a rudimentary landing gear using lighthill’s analogy. In: Proceedings for the 17th AIAA/CEAS aeroacoustics conference (32nd AIAA aeroacoustics conference), Portland, Oregon; 2011.
[50] Lighthill, M. J., On sound generated aerodynamically, Proc Roy Soc Lond A, 211, 564-587, (1952) · Zbl 0049.25905
[51] Ford, R.; Pain, C.; Piggott, M.; Goddard, A.; de Oliveira, C.; Umpleby, A., A nonhydrostatic finite-element model for three-dimensional stratified oceanic flows. part II: model validation, Mon Weather Rev, 132, 12, 2832-2844, (2004)
[52] Aechtner M. Arbitrary Lagrangian-Eulerian finite element modelling of the human heart. Master’s thesis, Royal Institute of Technology, School of Computer Science and Engineering; 2009. TRITA-CSC-E 2009:022.
[53] Karlsson M, Holmberg A, Åbom M, Fallenius B, Fransson J. Experimental determination of the aero-acoustic properties of an in-duct flexible plate. In: Proceedings for 14th AIAA/CEAS aeroacoustics conference (29th aiaa aeroacoustics conference), Vancouver, British Columbia; 2008.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.