zbMATH — the first resource for mathematics

Higher-order adaptive finite-element methods for orbital-free density functional theory. (English) Zbl 1284.65171
Summary: In the present work, we study various numerical aspects of higher-order finite-element discretizations of the non-linear saddle-point formulation of orbital-free density-functional theory. We first investigate the robustness of viable solution schemes by analyzing the solvability conditions of the discrete problem. We find that a staggered solution procedure where the potential fields are computed consistently for every trial electron-density is a robust solution procedure for higher-order finite-element discretizations. We next study the convergence properties of higher-order finite-element discretizations of orbital-free density functional theory by considering benchmark problems that include calculations involving both pseudopotential as well as Coulomb singular potential fields. Our numerical studies suggest close to optimal rates of convergence on all benchmark problems for various orders of finite-element approximations considered in the present study. We finally investigate the computational efficiency afforded by various higher-order finite-element discretizations, which constitutes the main aspect of the present work, by measuring the CPU time for the solution of discrete equations on benchmark problems that include large Aluminum clusters. In these studies, we use mesh coarse-graining rates that are derived from error estimates and an a priori knowledge of the asymptotic solution of the far-field electronic fields. Our studies reveal a significant 100–1000 fold computational savings afforded by the use of higher-order finite-element discretization, alongside providing the desired chemical accuracy. We consider this study as a step towards developing a robust and computationally efficient discretization of electronic structure calculations using the finite-element basis.

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
Full Text: DOI
[1] Kohn, W.; Sham, L.J., Self-consistent equations including exchange and correlation effects, Phys. rev., 140, A1133-A1138, (1965)
[2] Hohenberg, P.; Kohn, W., Inhomogeneous electron gas, Phys. rev., 136, B864-B871, (1964)
[3] Parr, R.; Yang, W., Density-functional theory of atoms and molecules, (2003), Oxford University Press
[4] Wang, L.; Teter, M.P., Kinetic energy functional of electron density, Phys. rev. B, 45, 13196-13220, (1992)
[5] Smargiassi, E.; Madden, P.A., Orbital-free kinetic-energy functionals for first-principle molecular dynamics, Phys. rev. B, 49, 5220-5226, (1994)
[6] Wang, Y.A.; Govind, N.; Carter, E.A., Orbital-free kinetic energy functionals for the nearly-free electron gas, Phys. rev. B, 58, 13465-13471, (1998)
[7] Wang, Y.A.; Govind, N.; Carter, E.A., Orbital-free kinetic energy density functionals with a density-dependent kernel, Phys. rev. B, 60, 16350-16358, (1999)
[8] Huang, C.; Carter, E.A., Transferable local pseudopotentials for magnesium, aluminum and silicon, Phys. chem. chem. phys., 10, 7109-7120, (2008)
[9] Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. rev. B, 54, 11169-11186, (1996)
[10] Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C., First-principles simulation: ideas, illustrations and the CASTEP code, J. phys. cond. matter, 14, 2717-2744, (2002)
[11] Gonze, X.; Beuken, J.-M.; Caracas, R.; Detraux, F.; Fuchs, M.; Rignanese, G.-M.; Sindic, L.; Verstraete, M.; Zerah, G.; Jollet, F.; Torrent, M.; Roy, A.; Mikami, M.; Ghosez, Ph.; Raty, J.-Y.; Allan, D.C., First-principles computation of material properties: the ABINIT software project, Comput. mater. sci., 25, 478-492, (2002)
[12] Ho, G.; Ligneres, V.L.; Carter, E.A., Introducing PROFESS: a new program for orbital-free density functional theory calculations, Comput. phys. commun., 179, 839-854, (2008)
[13] Beck, T.L., Real-space mesh techniques in density functional theory, Rev. mod. phys., 72, 1041-1080, (2000)
[14] Finnis, M., Interatomic forces in condensed matter, (2003), Oxford University Press
[15] White, S.R.; Wilkins, J.W.; Teter, M.P., Finite element method for electronic structure, Phys. rev. B, 39, 5819-5830, (1989)
[16] Tsuchida, E.; Tsukada, M., Electronic-structure calculations based on the finite-element method, Phys. rev. B, 52, 5573-5578, (1995)
[17] Tsuchida, E.; Tsukada, M., Adaptive finite-element method for electronic structure calculations, Phys. rev. B, 54, 7602-7605, (1996)
[18] Tsuchida, E.; Tsukada, M., Large-scale electronic-structure calculations based on the adaptive finite element method, J. phys. soc. jpn., 67, 3844-3858, (1998)
[19] Pask, J.E.; Klein, B.M.; Fong, C.Y.; Sterne, P.A., Real-space local polynomial basis for solid-state electronic-structure calculations: a finite element approach, Phys. rev. B, 59, 12352-12358, (1999)
[20] Pask, J.E.; Klein, B.M.; Sterne, P.A.; Fong, C.Y., Finite element methods in electronic-structure theory, Comput. phys. commun., 135, 1-34, (2001) · Zbl 0984.81038
[21] García-Cervera, C.J., An efficient real-space method for orbital-free density functional theory, Commun. comput. phys., 2, 334-357, (2006) · Zbl 1164.65479
[22] Gavini, V.; Knap, J.; Bhattacharya, K.; Ortiz, M., Non-periodic finite-element formulation of orbital-free density functional theory, J. mech. phys. solids., 55, 669-696, (2007) · Zbl 1162.74461
[23] Gavini, V.; Bhattacharya, K.; Ortiz, M., Quasi-continuum orbital-free density functional theory:a route to multi-million atom non-periodic DFT calculation, J. mech. phys. solids., 55, 697-718, (2007) · Zbl 1162.74314
[24] Zhang, D.; Shen, L.; Zhou, A.; Gong, X., Finite element method for solving Kohn-Sham equations based on self-adaptive tetrahedral mesh, Phys. lett. A, 372, 5071-5076, (2008) · Zbl 1221.81225
[25] Suryanarayana, P.; Gavini, V.; Blesgen, T.; Bhattacharya, K.; Ortiz, M., Non-periodic finite-element formulation of Kohn-Sham density functional theory, J. mech. phys. solids., 58, 256-280, (2010) · Zbl 1193.81006
[26] Lin, L.; Lu, J.; W.E., Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: total energy calculation, J. comp. phys., 231, 2140-2154, (2012) · Zbl 1251.82008
[27] Bylaska, E.J.; Host, M.; Weare, J.H., Adaptive finite element method for solving the exact Kohn-Sham equation of density functional theory, J. chem. theory comput., 5, 937-948, (2009)
[28] Lehtovaara, L.; Havu, V.; Puska, M., All-electron density functional theory and time-dependent density functional theory with high-order finite elements, J. chem. phys., 131, 054103, (2009)
[29] Hermannson, B.; Yevick, D., Finite-element approach to band-structure analysis, Phys. rev. B, 33, 7241-7242, (1986)
[30] Batcho, P.F., Computational method for general multicenter electronic structure calculations, Phys. rev E., 61, 7169-7183, (2000)
[31] Langwallner, B.; Ortner, C.; Sulli, E., Existence and convergence results for the Galerkin approximation of an electronic density functional, Math. models methods appl. sci., 20, 2237-2265, (2010) · Zbl 1208.82063
[32] Chen, H.; Gong, X.; Zhou, A., Numerical approximations of a nonlinear eigenvalue problem and applications to a density functional model, Math. methods appl. sci., 33, 1723-1742, (2010) · Zbl 1194.35293
[33] Cancès, E.; Chakir, R.; Maday, Y., Numerical analysis of nonlinear eigenvalue problems, J. sci. comput., 45, 90-117, (2010) · Zbl 1203.65237
[34] Chen, H.; He, L.; Zhou, A., Finite element approximations of nonlinear eigenvalue problems in quantum physics, Comput. methods appl. mech. eng., 200, 1846-1865, (2011) · Zbl 1228.81026
[35] Pask, J.E.; Sterne, P.A., Finite element methods in ab initio electronic structure calculations, Model. simul. mater. sci. eng., 13, R71-R96, (2005)
[36] Radhakrishnan, B.; Gavini, V., Effect of cell size on the energetics of vacancies in aluminum studied via orbital-free density functional theory, Phys. rev. B, 82, 094117-094121, (2010)
[37] R.A. Radovitzky, Error estimation and adaptive meshing in strongly nonlinear dynamic problems, Ph.D. Thesis, California Institute of Technology, 1998. · Zbl 0957.74058
[38] Levine, Z.H.; Wilkins, J.W., An energy -minimizing mesh for the schrodinger equation, J. comput. phys., 83, 361-372, (1989) · Zbl 0691.65091
[39] Patera, A.T., A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. comput. phys., 54, 468-488, (1984) · Zbl 0535.76035
[40] Ceperley, D.M.; Alder, B.J., Ground state of the electron gas by a stochastic method, Phys. rev., 45, 566-569, (1980)
[41] Perdew, J.P.; Zunger, A., Self-interaction correction to density-functional approximation for many-electron systems, Phys. rev. B, 23, 5048-5079, (1981)
[42] Lieb, E.H., Thomas-Fermi and related theories of atoms and molecules, Rev. mod. phys., 53, 603-641, (1981) · Zbl 1114.81336
[43] Choly, N.; Kaxiras, E., Kinetic energy density functionals for non-periodic systems, Sol. state commun., 121, 281-286, (2002)
[44] Brezzi, F.; Bathe, K.J., A discourse on the stability conditions for mixed finite element formulations, Comput. methods appl. mech. eng., 82, 27-57, (1990) · Zbl 0736.73062
[45] Ciarlet, P.G., The finite element method for elliptic problems, (2002), SIAM Philadelphia
[46] Boyd, J.P., Chebyshev and Fourier spectral methods, (2001), Dover Publications · Zbl 0987.65122
[47] J.R. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain, 1994.
[48] A.M. Collier, A.C. Hindmarsh, R. Serban, C.S. Woodward, User documentation for KINSOL v2.4.0, 2006.
[49] Dennis, J.E.; Schnabel, R.B., Numerical methods for unconstrained optimization and nonlinear equations, (1996), SIAM · Zbl 0847.65038
[50] Saad, Y.; Schultz, M.H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. sci. stat. comput., 7, 856-869, (1986) · Zbl 0599.65018
[51] Vander Vorst, H.A., Bi-CGSTAB: a fast and smoothly converging variant of bi-CG for the solution of nonsymmetric linear systems, SIAM J. sci. stat. comput., 13, 631-644, (1992) · Zbl 0761.65023
[52] Freund, R.W., A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. sci. comput., 14, 470-482, (1993) · Zbl 0781.65022
[53] E. Chow, A. Cleary, R. Falgout, HYPRE Users manual, v1.6.0. Technical Report UCRL-MA-137155, Lawrence Livermore National Laboratory, Livermore, CA, 1998.
[54] Goodwin, L.; Needs, R.J.; Heine, V., A pseudopotential total energy study of impurity-promoted intergranular embrittlement, J. phys.: cond. mater., 2, 351-365, (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.